Siberian Mathematical Journal

, Volume 26, Issue 6, pp 783–787 | Cite as

Isometry of domains inRn and relative isometry of their boundaries

  • V. A. Aleksandrov


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. P. Kopylov, “Boundary values of mappings close to an isometry,” Sib. Mat. Zh.,25, No. 3, 120–131 (1984).Google Scholar
  2. 2.
    V. A. Aleksandrov, “Isometry of domains in Rn and relative isometry of their boundaries,” ibid., 3–13 (1984).Google Scholar
  3. 3.
    Extrinsic Geometry of Convex Surfaces, Am. Math. Soc., Providence (1973).Google Scholar
  4. 4.
    E. P. Sen'kin, “Rigidity of convex hypersurfaces,” Ukr. Geometr. Sb.,12, 131–152 (1972).Google Scholar
  5. 5.
    A. D. Aleksandrov, “On a class of closed surfaces,” Mat. Sb.,4(46), No. 1, 69–77 (1938).Google Scholar
  6. 6.
    L. Nirenberg, “Rigidity of a class of closed surfaces. Nonlinear problems,” Proc. Symp. Madison (Univ. of Wisconsin Press), 177–193 (1962).Google Scholar
  7. 7.
    A. D. Aleksandrov, Intrinsic Geometry of Convex Surfaces [in Russian], Gostekhizdat, Moscow-Leningrad (1948).Google Scholar
  8. 8.
    S. Saks, Theory of the Integral, Stechert, New York (1937).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • V. A. Aleksandrov

There are no affiliations available

Personalised recommendations