Neurochemical Research

, Volume 18, Issue 3, pp 291–295 | Cite as

Abundant Gsα mRNA in basket cells of the dentate gyrus in adult rat hippocampus

  • A. Najlerahim
Original Articles


In situ hybridization histochemistry (ISHH) has been used to study the differential distribution and relative abundance of mRNAs encoding a stimulatory alpha subunit of the G-protein (Gsα) and glutamic acid decarboxylase (GAD) in the dorsal hippocampus in adult rat brain. The present quantitative study shows that GABAergic neurons containing high levels of GAD mRNA, express considerably more Gsα message than excitatory principal neurons, the granule cells of the dentate gyrus and the pyramidal cells of CA1 subfield. A subpopulation of basket cells of the dentate gyrus exhibited a uniquely high level of Gsα mRNA, in addition to GAD. These findings may indicate a specific functional role for Gsα in these GABAergic neurons in the hippocampus.

Key Words

Rat hippocampus basket cells Gsα GAD mRNA In situ hybridization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abercrombie, M. 1946. Estimation of nuclear populations from microtomic sections. Anat. Rec. 94:239–247.Google Scholar
  2. 2.
    Andersen, P., Eccles, J. C., and Lyning, Y. 1964. Pathway of postsynaptic inhibition in the hippocampus. J. Neurophysiol. 27:608–619.Google Scholar
  3. 3.
    Andersen, P., Holmqvist, B., and Voorhoeve, P. E. 1966. Entorhinal activation of dentate granule cells. Acta Physiol. Scand. 66:448–460.Google Scholar
  4. 4.
    Buzsaki, G., and Eidelberg, E. 1981. Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition. Brain Res. 230:346–350.Google Scholar
  5. 5.
    Buzsaki, G., and Eidelberg, E. 1982. Direct afferent excitation and long-term potentiation of hippocampal interneurons. J. Neurophysiol. 48:597–607.Google Scholar
  6. 6.
    Davis, L. G., Dibner, M. D., and Battey, G. F. Basic Methods in Molecular Biology, Elsevier, New York. p. 77.Google Scholar
  7. 7.
    Dawns, R. W., Speigl, A. M., Singer, M., Reen, S., and Aurbach, G. D. 1980. Fluoride stimulation of adenylate cyclase is depedent on the guanine nucleotide regulatory protein. Biol. Chem. 255:949–954.Google Scholar
  8. 8.
    Erlander, M. G., Tillakaratne, N. J. K., Feldblum, S., Patel, N., and Tobin, A. J. 1990. Two genes encode distinct glutamate decarboxylase mRNA in a rat model of temporal lobe epilepsy. Neuron 7:91–100.Google Scholar
  9. 9.
    Gardiner, I. M., and De-Belleroche, J. 1990. Modulation of gamma aminobutyric acid release in cerebral cortex by fluoride, phenol ester, and phosphodiestrase inhibitors: Differential sensitivity of acetylcholine release to fluoride and potassium channel blockers. J. Neurochem. 54:1130–1135.Google Scholar
  10. 10.
    Jones, D. T., and Reed, R. R. 1987. Molecular cloning of five GTP-binding protein cDNA species from olfactory neuroepithelium. J. Biol. Chem. 262:14241–14249.Google Scholar
  11. 11.
    Kobayashi, Y., Kaufman, D. L., and Tobin, A. J. 1987. Glutamic acid decarboxylase cDNA: Nucleotide sequence encoding an enzymatically active fusion protein. J. Neurosci. 7:2768–2772.Google Scholar
  12. 12.
    Largent, B. L., Jones, D. T., Reed, R. R., Pearson, R. C. A., and Snyder, S. H. 1988. G protein mRNA mapped in rat brain by in situ hybridization. Proc. Natl. Acad. Sci. USA 85:2864–2868.Google Scholar
  13. 13.
    Leranth, C. S., and Frotscher, M. 1983. Commisural afferents to the rat hippocampus terminate on vasoactive intestinal polypeptide-like immunoreactive non-pyramidal neurons. An EM immunocytochemical degeneration study. Brain Res. 276:357–361.Google Scholar
  14. 14.
    Lindefors, N., Brene, S., Herrera-Marschitz, M., and Persson, H. 1989. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in the rat brain. Exp. Brain. Res. 77:611–620.Google Scholar
  15. 15.
    Najlerahim, A., Harrison, P. J., Barton, A. J. L., Heffernan, J., and Pearson, R. C. A. 1990. Distribution of messenger RNAs, encoding the enzymes glutaminase, aspartate aminotransferase and glutamic acid decarboxylase in rat brain. Mol. Brain Res. 7:317–333.Google Scholar
  16. 16.
    Najlerahim, A., Showell, D. G. L., and Pearson, R. C. A. 1991. Transient increase in glutamic acid decarboxylase mRNA in the cerebral cortex following focal cortical lesion in the rat. Exp. Brain Res. 87:113–118.Google Scholar
  17. 17.
    Najlerahim, A., Williams, S. F., Pearson, R. C. A., and Gefferys, J. G. R. 1992. Increased expression of GAD mRNA during the chronic epileptic syndrome due to intrahippocampal tetanus toxin. Exp. Brain Res. in press.Google Scholar
  18. 18.
    Nicoll, R. A., 1988. The coupling of neurotransmitter receptors to ion channels in the brain. Science 241:545–551.Google Scholar
  19. 19.
    Paxinos, G., and Watson, C. 1986. The rat brain in steotaxic coordinates, Academic Press, 2nd edn, Orlando.Google Scholar
  20. 20.
    Ribak, C. E., Vaughn, J. E., and Saito, K. 1978. Immunocyutochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res. 140:315–332.Google Scholar
  21. 21.
    Seress, L., and Ribak, C. E. 1983. GABAergic cells in the dentete gyrus appear to be local circuit and projection neurons. Exp. Brain Res. 50:173–182.Google Scholar
  22. 22.
    Serres, L., and Ribak, C. E. 1984. Direct commissural connection to the basket cells of the hippocampal dentate gyrus: anatomical evidence for feed-forward inhibition. J. Neurocytol. 13:215–225.Google Scholar
  23. 23.
    Sloviter, R., and Nilaver, G. 1987. Immunocytochemical localization of GABA-cholecystokinin-, vasoactive intestinal polypeptide-, and somatostatin- like immunoreactive in the area dentat and hippocampus of the rat. J. Comp. Neurol. 256:42–60.Google Scholar
  24. 24.
    Sternweis, P. C., Northup, J. K., Smiegel, M. D., and Gilman, A. G. 1981. The regulatory component of adenylate cyclase: purification and properties. J. Biol Chem. 256:11517–11526.Google Scholar
  25. 25.
    Sternweis, P. C., and Pang, L. H. 1990. The G-protein channel connection. TINS 13:122–126.Google Scholar
  26. 26.
    Storm-Mathiesen, J., Leknes, A. K., Bore, A. T., Vaaland, J. L., Edminson, P. F., Haug, F. M. S., and Ottersen, O. P. 1983. First visualization of glutamate and GABA in neurons by immunocytochemistry. Nature 301:517–520.Google Scholar
  27. 27.
    Worley, P. F., Baraban, J. M., De Souza, E. B., and Snyder, S. H. 1986. Mapping second messenger system in the brain: different localizations of adenylate cyclase and protein kinase C. Proc. Natl. Acad. Sci. USA 83:4053–4057.Google Scholar
  28. 28.
    Yatani, A., Hamm, H., Codina, J., Mazzoni, M. R., Birnbaumer, L., and Brown, A. M. 1987. A G protein directly regulates mammalian cardiac calcium channels. Science. 238:1288–1291.Google Scholar
  29. 29.
    Yatani, A., Imoto, Y., Codina, J., Hamilton, S. I., Brown, A. M., and Birnbaumer, L. 1988. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine sensitive Ca2+ channels. Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist. J. Biol. Chem. 263:9887–9895.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. Najlerahim
    • 1
  1. 1.Department of Biomedical ScienceUniversity of SheffieldSheffieldU. K.

Personalised recommendations