Advertisement

Lithuanian Mathematical Journal

, Volume 16, Issue 2, pp 265–311 | Cite as

The 16th Conference of the Lithuanian Mathematical Society

Information
  • 20 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. F. Laptev and N. M. Ostianu, Abstracts of the 5th All-Union Conference on the Contemporary Problems of Geometry [in Russian], Samarkand (1972).Google Scholar
  2. 2.
    N. M. Ostianu, Abstracts of the 6th All-Union Conference on the Contemporary Problems of Geometry [in Russian], Vilnius (1975).Google Scholar
  3. 3.
    A. A. Baškene, Abstracts of the 6th All-Union Conference on the Contemporary Problems of Geometry [in Russian], Vilnius (1975).Google Scholar

Literature Cited

  1. 1.
    Ya. A. Gabovich, “Periodic continued fractions of higher irrationalities,” Author's Abstract of a Candidate's Dissertation, Tartu (1950).Google Scholar
  2. 2.
    A. V. Ozerskii, 1) “Linear continued fractions, their convergence and transformation”; 2) “Three-dimensional linear continued fractions, their convergence and transformation,” in: Aspects of Instruction of Mathematics [in Russian], No. 2, Riga (1975).Google Scholar

Literature Cited

  1. 1.
    T. Kato, Perturbation Theory of Linear Operators [Russian translation], Mir, Moscow (1972).Google Scholar

Literature Cited

  1. 1.
    P. Ju. Alenka, “Inhomogeneous Riemann boundary-value problem with an infinite index of logarithmic order γ>1 for the half-plane,” Liet. Matem. Rink.,15, No. 1 (1975).Google Scholar

Literature Cited

  1. 1.
    S. A. Bitsadze, Proc. Third All-Union Math. Congr., Vol. 3 [in Russian], Izd. Akad. Nauk SSSR, Moscow (1958), pp. 36–41.Google Scholar

Literature Cited

  1. 1.
    E. V. Bulinskaya, “Optimal inventory control in the case of a convex function and of a charge for the order,” Teor. Veroyat. Ee Primen.,12, No. 1, (1967).Google Scholar
  2. 2.
    N. A. Janušauskaite, “Continuous analog of an optimal inventory control problem,” Liet. Matem. Rink.,14, No. 2, (1974).Google Scholar

Literature Cited

  1. 1.
    R. Bellman, Dynamic Programming, Princeton Univ. Press, Princeton, New Jersey (1957).Google Scholar
  2. 2.
    P. Rutkauskas and V. Bistritska, “Pure balanced strategies for one differential game,” Matem. Metody v Sotsial'nykh Naukakh, No. 5, 9–22 (1975).Google Scholar
  3. 3.
    P. Rutkauskas and V. Bistritskas, “Continuous analog of a dynamic programming distribution process,” Liet. Matem. Rink.,12, No. 2, 133–140 (1972).Google Scholar

Literature Cited

  1. 1.
    H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New York (1931).Google Scholar
  2. 2.
    N. G. de Bruijn, “Pólya's enumeration theory,” in: E. F. Beckenbach (editor), Applied Combinatorial Mathematics, Wiley, New York (1964).Google Scholar
  3. 3.
    R. C. Read, “The use of S-functions in combinatorial analysis,” Can. J. Math.,20, 808–841 (1968).Google Scholar

Literature Cited

  1. 1.
    A. Laurinčikas, “Multidimensional distribution of the values of multiplicative functions,” Liet. Matem. Rink.,15, No. 2, 13–24 (1975).Google Scholar

Literature Cited

  1. 1.
    A. F. Lavrik, “Functional equations for the Dirichlet L-functions and the divisor problem in arithmetic progressions,” Izv. Akad. Nauk SSSR, Ser. Matem.,30, No. 2 433–488 (1966).Google Scholar
  2. 2.
    A. F. Lavrik, “Approximate functional equation for the Hecke zeta-functions of an imaginary quadratic field,” Matem. Zametki,2, 475–482 (1967).Google Scholar
  3. 3.
    A. F. Lavrik, “On an approximate functional equation for the Dirichlet L-functions,” Tr. Mosk. Matem. Obshch.,8, 91–103 (1968).Google Scholar

Literature Cited

  1. 1.
    B. V. Levin and N. M. Timofeev, “Analytic method in probabilistic number theory,” Uch. Zap. VSPI, Ser. Matem., No. 2, 57–156 (1971).Google Scholar
  2. 2.
    B. V. Levin and N. M. Timofeev, “Distribution of the values of additive functions,” Usp. Matem. Nauk,28, No. 1(169), 243–244 (1973).Google Scholar
  3. 3.
    P. D. T. A. Elliott, “On the limiting distribution of additive arithmetic functions,” Acta Math.,132, 53–75 (1974).Google Scholar
  4. 4.
    P. Elliott, “Sur les fonctions arithmétiques additives,” C. R. Acad. Sci., Paris,278, No. 25, A1573–A1575.Google Scholar
  5. 5.
    P. D. T. A. Elliott, “On connections between the Turan-Kubilius inequality and the large sieve: some applications,” Proc. Symp. Pure Math., Vol. 24 (1973), pp. 77–82.Google Scholar

Literature Cited

  1. 1.
    J. Kubilius, “Method of Dirichlet generating series in the theory of distribution of arithmetic functions,” Liet. Matem. Rink.,12, No. 2, (1972).Google Scholar
  2. 2.
    H. Delange, “Sur des formules de Atle Selberg,” Acta Arithmetica,19, No. 2, 105–146 (1971).Google Scholar
  3. 3.
    R. Skrabutenas, “Asymptotic expansions of the sums of multiplicative functions,” Liet. Matem. Rink.,14, No. 2, 115–126 (1974).Google Scholar
  4. 4.
    B. V. Levin and A. A. Yudin, “Local limit theorems for arithmetic functions,” Acta Arithmetica,22, 283–327 (1973).Google Scholar

Literature Cited

  1. 1.
    A. Laurinčikas, “Distribution of the values of complexpvalued functions,” Liet. Matem. Rink.,15, No. 2 (1975).Google Scholar
  2. 2.
    E. Stankus, “Distribution of the Dirichlet L-functions with real characters in the plane Re s>1/2,” Liet. Matem. Rink.,15, No. 4, (1975).Google Scholar

Literature Cited

  1. 1.
    F. F. Mišeikis, “On certain classes of limit distributions,” Liet. Matem. Rink.,12, No. 4 (1972).Google Scholar

Literature Cited

  1. 1.
    I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Random Variables [in Russian], Nauka, Moscow (1965).Google Scholar
  2. 2.
    W. Philipp, “The central limit problem for mixing sequences of random variables,” Z. Wahrscheinlichkeitstheorie und v. Geb.,12, 155–171 (1969).Google Scholar
  3. 3.
    W. Philipp, “The remainder in the central limit theorem for mixing stochastic processes,” Ann. Math. Statist.,40, No. 2, 601–609 (1969).Google Scholar

Literature Cited

  1. 1.
    R. N. Bhattacharya, “Rates of weak convergence and asymptotic expansions for classical central limit theorems,” Ann. Math. Stat.,42, No. 1, 241–259 (1971).Google Scholar
  2. 2.
    A. Bikialis and A. Žemaitis, “Asymptotic expansions for the probabilities of large deviations. II,” Liet. Matem. Rink.,14, No. 4, 45–52 (1974).Google Scholar

Literature Cited

  1. 1.
    V. A. Statulevičius, “On large deviations,” Z. Wahrscheinlichkeitstheorie verw. Geb.,6, No. 2, 133–144 (1966).Google Scholar
  2. 2.
    A. Žemaitis, “Asymptotic expansions for the probabilities of large deviations. I,” Liet. Matem. Rink.,14, No. 1, 1–25 (1974).Google Scholar
  3. 3.
    A. Bikialis and A. Žemaitis, “Asymptotic expansions for the probabilities of large deviations. II,” Liet. Matem. Rink.,14, No. 4, 45–52 (1974).Google Scholar

Literature Cited

  1. 1.
    T. Komatsu, “Markov processes associated with certain integrodifferential operators,” Osaka J. Math.,10, 271–303 (1973).Google Scholar
  2. 2.
    V. Matsiavičius, “On the weak convergence of random processes in the spaces 288-1,” Liet. Matem. Rink.,14, No. 4, 117–121 (1974).Google Scholar
  3. 3.
    R. Morkvenas, “Weak convergence of solution of the martingale problem,” Liet. Matem. Rink.,15, No. 3, 157–161 (1975).Google Scholar

Literature Cited

  1. 1.
    B. Rosen, “A note on asymptotic normality of sums of higher dimensionally indexed random variables,” Ark. Math.,8, 33–43 (1969).Google Scholar
  2. 2.
    L. A. Zolotukhina and V. N. Chugaeva, “A central limit theorem for one class of random fields,” Matem. Zametki,14, No. 4, 549–558 (1973).Google Scholar
  3. 3.
    N. N. Leonenko, “On an estimate of convergence rate in the central limit theorem for m-dependent random fields,” Matem. Zametki,17, No. 1, 129–132 (1975).Google Scholar
  4. 4.
    R. V. Erickson, “L1 bounds for asymptotic normality of m-dependent sums using Stein's technique,” Ann. Probability,2, No. 3, 522–529 (1974).Google Scholar
  5. 5.
    C. Stein, “A bound for the error in the normal approximation to the distribution of a sum of dependent random variables,” Proc. Sixth Berkeley Symp. Math. Statist. Prob., Vol. 2, Univ. of Calif. Press, Berkeley, Calif., pp. 583–602.Google Scholar

Literature Cited

  1. 1.
    V. N. Tutubalin, Teor. Veroyat. Ee Primen.,13, No. 1, 63–81 (1968).Google Scholar
  2. 2.
    V. V. Petrov, Sums of Independent Random Variables [in Russian], Moscow (1972).Google Scholar
  3. 3.
    A. K. Grintsevičius, “Limit theorems for products of random linear transformations of a straight line,” Liet. Matem. Rink.,15, No. 4, 61–77 (1975).Google Scholar

Literature Cited

  1. 1.
    H. Bergstrem, “On the central limit theorem in Rk. The remainder term for special Borel sets,” Z. Wahrscheinlichkeitstheorie verw. Geb.,5, No. 14, 113–126 (1969).Google Scholar
  2. 2.
    A. Bikialis, “On the central limit theorem in Rk. II,” Liet. Matem. Rink.,12, No. 1, 73–84 (1972).Google Scholar
  3. 3.
    G. Jasiunas, “On an estimate of the remainder term in a multidimensional central limit theorem,” Liet. Matem. Rink.,11, No. 4, 905–910 (1971).Google Scholar

Literature Cited

  1. 1.
    I. Banis, “Estimate of convergence rate in the central limit theorem,” Liet. Matem. Rink.,12, No. 1 (1972).Google Scholar
  2. 2.
    V. I. Paulauskas, “On the estimate of convergence in a limit theorem in a limit theorem in the case of a stable limit law,” Abstr. Repts. Internat. Conf. Theory Prob. Math. Statist., I–II [in Russian], Vilnius (1973).Google Scholar
  3. 3.
    V. I. Paulauskas, “Uniform and nonuniform estimates of the remainder term in a limit theorem with a stable limit law,” Liet. Matem. Rink.,14, No. 4 (1974).Google Scholar

Literature Cited

  1. 1.
    Yu. R. Gabovich, “Characteristic properties of a normal distribution,” Teor. Veroyat. Ee Primen.,19, No. 2, 374–383 (1974).Google Scholar

Literature Cited

  1. 1.
    J. Hunter, “Renewal theory in two dimensions: basic results,” Adv. Appl. Probability,6, No. 2, 376–391 (1974).Google Scholar
  2. 2.
    J. Hunter, “Renewal theory in two dimensions: asymptotic results,” Adv. Appl. Probability,6, No. 3, 546–562 (1974).Google Scholar

Literature Cited

  1. 1.
    N. Dunford, “An ergodic theorem for n-parameter groups,” Proc. Nat. Acad. Sci. USA,25, 195–196 (1939).Google Scholar
  2. 2.
    H. R. Pitt, “Some generalizations of the ergodic theorem,” Proc. Camb. Philos. Soc.,38, 325–343 (1942).Google Scholar
  3. 3.
    N. Wiener, “The ergodic theorem,” Duke Math. J.5, 1–18 (1939).Google Scholar
  4. 4.
    A. A. Tempel'man, “Ergodic theorems for wide-sense homogeneous generalized random fields and random fields on groups,” Liet. Matem. Rink.,2, No. 1, 195–213 (1962).Google Scholar

Literature Cited

  1. 1.
    Kai-Lai Chung, Homogeneous Markov Chains [Russian translation], Mir, Moscow (1964).Google Scholar
  2. 2.
    Z. Navitskas, “Ergodicity criteria for homogeneous Markov chains in a special phase space. I,” Liet. Matem. Rink.,12, No. 3 (1972).Google Scholar
  3. 3.
    Z. Navitskas, “Ergodicity criteria for homogeneous Markov chains in a special phase space. II,” Liet. Matem. Rink.,12, No. 3 (1972).Google Scholar
  4. 4.
    Z. Navitskas, “Ergodicity criteria for homogeneous Markov chains in a special phase space. III,” Liet. Matem. Rink.,12, No. 4 (1972).Google Scholar

Literature Cited

  1. 1.
    G. R. Chase, “Chi-square test when parameters are estimated independently of the sample,” J. Amer. Statist. Assoc.,67, No. 339, 609–611 (1972).Google Scholar
  2. 2.
    H. Cramér, Mathematical Methods of Statistics, Princeton Univ. Press, Princeton, New Jersey (1946).Google Scholar

Literature Cited

  1. 1.
    D. R. Hartree, The Calculation of Atomic Structures, New York-London (1957).Google Scholar
  2. 2.
    T. Koopmans, Physica,1, 104 (1933).Google Scholar
  3. 3.
    R. I. Karaziya, D. V. Grabauskas, and A. A. Kiselev, Liet. Fiz. Rink.,14, 249 (1974).Google Scholar
  4. 4.
    F. L. Lea, E. C. Seltrer, and F. Boehm, Phys. Lett.,A38, No. 1, 29 (1972).Google Scholar

Literature Cited

  1. 1.
    S. Ju. Vozbinas, “Method of separation of signals with overlapping spectra,” Cand. Diss., IPM Akad. Nauk LitovSSR, Gorky Polytech. Inst. (1966).Google Scholar
  2. 2.
    Yu. N. Babanov, “Optimal radio reception of a useful signal under conditions of signal actions from extraneous radio stations,” Doct. Diss., Gorky Polytech. Inst. (1968).Google Scholar
  3. 3.
    A. K. Lipeika, “Determination of the variations of properties of random sequences of autoregression type,” Cand. Diss., IPM Akad. Nauk LitovSSR, Vilnius (1975).Google Scholar
  4. 4.
    S. Ju. Vozbinas, Radiotekhnika, No. 1 (1972).Google Scholar

Literature Cited

  1. 1.
    A. A. Galitskas, “Questions on the statistical optimization of pulse transmisson method and on the selection of continuous signals,” Cand. Diss., KPI (1974).Google Scholar
  2. 2.
    S. Ju. Vozbinas, “Optimal interpolation using causal and orthogonal filters,” Eighth All-Union Symp. Representation Methods and Instrument Analysis of Random Processes and Fields [in Russian], Vol. 3, Leningrad (1975).Google Scholar
  3. 3.
    Yu. F. Pelegov, “Investigation of methods for transmitting discrete information by signals with identical amplitude spectra,” Author's Abstr. Doct. Diss., Leningr. Élektrotekhn. Inst. Svyazi, Leningrad (1972).Google Scholar

Literature Cited

  1. 1.
    V. V. Kleiza, “Computation of inverse functions by the Monte Carlo method,” Liet. Matem. Rink.,16, No. 2 (1976).Google Scholar

Literature Cited

  1. 1.
    G. G. Belonogov and V. I. Bogatyrev, Automated Information Systems [in Russian], Sov. Radio, Moscow (1973).Google Scholar
  2. 2.
    J. M. Foster, List Processing, Am. Elsevier (1967).Google Scholar
  3. 3.
    Electrolysis and Electrophoresis. Manual and List of Terms. Patent Department of the USA, Second Edition, April, 1971.Google Scholar
  4. 4.
    Autocode for the BÉSM-6 [in Russian], ITM and VT Akad. Nauk SSSR, Moscow (1969).Google Scholar
  5. 5.
    V. F. Tyurin (editor-in-charge), The Operational System DISPAK for the BÉSM-6 (for the User) [in Russian], No. I, Moscow (1973).Google Scholar

Literature Cited

  1. 1.
    I. A. Boyanzhu et al., Reference Material on the Translator TA - IM [in Russian], IPM Akad. Nauk SSSR, Moscow (1969).Google Scholar
  2. 2.
    M. I. Ageev, Fundamentals of the Algorithmic Language ALGOL-60 [in Russian], Vychislit. Tsentr. Akad. Nauk SSSR, Moscow (1964).Google Scholar
  3. 3.
    Autocode for the BÉSM-6 [in Russian], ITM and VT Akad. Nauk SSSR, Moscow (1969).Google Scholar

Literature Cited

  1. 1.
    A. D. Zakrevskii, Algorithms for the Synthesis of Discrete Automata [in Russian], Nauka, Moscow (1971).Google Scholar
  2. 2.
    R. M. Bowman and E. S. McVey, “A method for the fast approximate solution of large prime implicant charts,” IEEE Trans. Computers, No. 2, 169–173 (1970).Google Scholar

Literature Cited

  1. 1.
    A. A. Korbut and Yu. Yu. Finkel'shtein, Discrete Programming [in Russian], Nauka, Moscow (1969).Google Scholar
  2. 2.
    D. B. Plukene, “Application of pseudo-Boolean methods for solving integral linear programming problems with Boolean variables,” in: Theory of Finite Automata and Its Applications [in Russian], Riga (1974).Google Scholar

Literature Cited

  1. 1.
    V. P. Shirikov (ed.), The FORTRAN Language [in Russian], Dubna (1969).Google Scholar
  2. 2.
    BÉSM Informationen, Publication of the Computer Center of the Institute of High-Energy Physics of the Academy of Sciences of the German Democratic Republic, BI-B 70-01, Berlin-Zoyten (1970).Google Scholar
  3. 3.
    FORTRAN Extended Reference Manual, Publ. No. 60329100, California (1972).Google Scholar

Literature Cited

  1. 1.
    Z. Žemaitis, “Lietuviškos matematinės terminologijos istorijai,” Lietuviu Kalbotyros Klausimai,8, 195–201 (1966).Google Scholar
  2. 2.
    P. Bendorius and P. Daugirda, Aritmetikos Uždaviniu ir Pavyždziu Rinkinys, Antroji Dalis (1909).Google Scholar
  3. 3.
    [P. Bugailiškis], Aritmetikos Uždavinyas Vidurinėms Mokykloms, Antroji Dalis, Bajevskio Sp. (1915).Google Scholar
  4. 4.
    A. Jakštas, Geometrijos Vadovėlis Dviklasėms Mokykloms (1916).Google Scholar
  5. 5.
    Z. Žemaitis, “Dėl aritmetikos terminologijos,” Santara, No. 28 (1917).Google Scholar
  6. 6.
    [jablonskis], Aritmetika, Mokslo Pradžia ir Terminai (1917).Google Scholar
  7. 7.
    [M. Bagdons], elementarinės Algebros Vadovėlis (1916).Google Scholar
  8. 8.
    J. Jablonskis, Mūsu Žodynėlis (1918).Google Scholar
  9. 9.
    M. Šikšnys, Aritmetikos ir Algebros Terminu Žodynėlis (1919).Google Scholar
  10. 10.
    Z. Žemaitis, Geometrijos ir Trigonometrijos Terminu Rinkinėlis (1920).Google Scholar
  11. 11.
    L. Daukša, Algebros Uždavinynas Vyrensniosioms Klasėms (1921).Google Scholar
  12. 12.
    A. Busilas and Z. Balutis, Algebra (1934).Google Scholar
  13. 13.
    J. Mašiotas, Erdvės Geometrija (1928).Google Scholar
  14. 14.
    P. Mašiotas, Plokstumos Trigonometrija ir Uždavinynas, III leid. (1929).Google Scholar
  15. 15.
    A. Juška, Aukštosios Matematikos Pradmenys (1940).Google Scholar
  16. 16.
    S. Gaižiūnas, “Iš elementarinės matematikos terminu istorijos,” Mūsu Kalba,2 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Personalised recommendations