Advertisement

Lithuanian Mathematical Journal

, Volume 16, Issue 2, pp 209–216 | Cite as

Integers with many prime factors in diophantinely smooth sequences

  • I. Kátai
Article
  • 15 Downloads

Keywords

Prime Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. H. Hardy and S. Ramanujan, “The normal number of prime factors of a number n,” Quart. J. Pure and Applied Math.,48, 76–92 (1917).Google Scholar
  2. 2.
    P. Turan, “On the theorem of Hardy and Ramanujan,” J. London Math. Soc.,9, 274–276 (1934).Google Scholar
  3. 3.
    P. Turán, “Über einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan,” J. London Math. Soc.,11, 125–133 (1936).Google Scholar
  4. 4.
    P. Erdös, “On the number of prime factors of p-1 and some related problems concerning Euler's function,” Quart. J. of Math., Oxford,6, 205–213 (1935).Google Scholar
  5. 5.
    H. Halberstam, “On the distribution of additive number-theoretic functions (III),” J. London Math. Soc.,31, 14–27 (1956).Google Scholar
  6. 6.
    J. P. Kubilius, Probabilistic Methods in the Theory of Numbers, Translations of Mathematical Monographs, Vol. 11, Amer. Math. Soc., Providence, Rhode Island (1964).Google Scholar
  7. 7.
    A. I. Vinogradov and Yu. V. Linnik, “Estimates of the sum of the number of divisors in a short segment of an arithmetic progression,” Usp. Mat. Nauk,12, 277–80 (1957).Google Scholar
  8. 8.
    P. Erdös, “On the sum ∑df (n),” J. London Math. Soc.,27, 7–15 (1952).Google Scholar
  9. 9.
    M. B. Barban, Multiplicative functions of ∑R uniformly distributed sequences,” Izv. Akad. Nauk, UkrSSR,6, 13–19 (1964).Google Scholar
  10. 10.
    M. B. Barban, “Density of zeros of the Dirichlet L-series and the problem of the addition of prime and almost prime numbers,” Mat. Sb.,61(103), 418–425 (1963).Google Scholar
  11. 11.
    A. I. Vinogradov, “On the density conjecture for the Dirichlet L-series,” Izv. Akad. Nauk SSSR,29, 903–934 (1965).Google Scholar
  12. 12.
    E. Bombieri, “On the large sieve,” Matematika,12, 201–225 (1965).Google Scholar
  13. 13.
    I. Kátai, “Estimation of the number of prime divisons on diophantinely smooth sequences of integers,” MTA III, Osztály Közlemènyei,18, 147–154 (1968).Google Scholar
  14. 14.
    H. Rademacher, “Beiträge zu Viggo Brunschen methode in der Zahlentheorie,” Abhandlungen Math. Seminar Hamburg Univ.,3, 12–40 (1924).Google Scholar
  15. 15.
    G. H. Hardy, Divergent Series, Oxford Univ. Press (1949).Google Scholar
  16. 16.
    M. B. Barban and B. V. Levin, “Multiplicative functions of ‘shifted’ primes,“ Soviet Math. Dokl.,9, 912–914 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • I. Kátai

There are no affiliations available

Personalised recommendations