Siberian Mathematical Journal

, Volume 12, Issue 2, pp 251–260 | Cite as

A class of nonlinear operator equations and certain equations of mechanics

  • R. I. Kachurovskii
Article

Keywords

Operator Equation Nonlinear Operator Nonlinear Operator Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. G. Bubnov, “Report on the papers of Prof. Timoshenko awarded the Zhukov prize,” Sb. In-ta Inzh. Putei Soobshcheniya, No. 81, SPB (1913).Google Scholar
  2. 2.
    G. I. Petrov, “Application of the Galerkin method to the problem of stability of viscous fluid flow,” Prikl. Matem. i Mekh,4, No. 3, 3–12 (1940).Google Scholar
  3. 3.
    M. V. Keldysh, “On the method of B. G. Galerkin for the solution of boundary value problems,” Izv. Akad. Nauk SSSR, Ser. Matem.,6, No. 5, 309–330 (1942).Google Scholar
  4. 4.
    Yu. V. Repman, “The question of the mathematical foundation of the Galerkin method for the solution of problems on the stability of elastic systems,” Prikl. Matem. i Mekh.,4, No. 2, 3–6 (1940).Google Scholar
  5. 5.
    L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces [in Russian], Fizmatgiz, Moscow (1959).Google Scholar
  6. 6.
    S. G. Mikhlin, Variational Methods in Mathematical Physics [in Russian], GITTL, Moscow (1957).Google Scholar
  7. 7.
    M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations [in Russian], GITTL, Moscow (1956).Google Scholar
  8. 8.
    R. I. Kachurovskii, “Nonlinear equations with monotone and other operators,” Dokl. Akad. Nauk SSSR,173, No. 3, 515–518 (1967).Google Scholar
  9. 9.
    M. M. Vainberg and R. I. Kachurovskii, “On the variational theory of nonlinear operators and equations,” Dokl. Akad. Nauk SSSR,129, No. 6, 1099–2002 (1959).Google Scholar
  10. 10.
    F. E. Browder, “Nonlinear elliptic boundary value problem,” Bull. Amer. Math. Soc.,69, No. 6, 862–874 (1963).Google Scholar
  11. 11.
    F. E. Browder, “On the unification of the calculus, of variations and the theory of monotone nonlinear operators in Banach spaces,” Proc. Nat. Acad. Sci. USA, No. 2, 419–425 (1966).Google Scholar
  12. 12.
    J. L. Lions, “Sur certaines équations paraboliques nonlinéaries,” Bull. Soc. Math. France,93, No. 1, 155–175 (1965).Google Scholar
  13. 13.
    I. I. Vorovich, “On the existence of solutions in the nonlinear theory of shells,” Izv. Akad. Nauk SSSR, Ser. Matem.,19, No. 4, 173–186 (1955).Google Scholar
  14. 14.
    O. A. Ladyzhenskaya, Mathematical Questions in the Dynamics of a Viscous Incompressible Fluid [in Russian], Fizmatgiz, Moscow (1969).Google Scholar
  15. 15.
    Yu. A. Dubinskii, “On a certain operator scheme and the solvability of a number of quasilinear equations of mechanics,” Dokl. Akad. Nauk SSSR,176, No. 3, 506–509 (1967).Google Scholar
  16. 16.
    I. I. Vorovich and V. I. Yudovich, “The stationary flow of viscous fluid,” Dokl. Akad. Nauk SSSR,124, No. 3, 542–545 (1959).Google Scholar
  17. 17.
    M. I. Vishik, “Quasilinear strongly elliptic systems of differential equations having a divergent form,” Tr. Mock. Matem. Obshch.,12, 125–184 (1963).Google Scholar
  18. 18.
    A. Langenbach, “Variationsmethoden in der nichtlinearen Elastizität und Plastizitätstheorie,” Wiss. Zeits Humbodt-Univ., Berlin, Math.-Nat. R.,9, 13–23 (1959–1960).Google Scholar
  19. 19.
    S. G. Mikhlin, Numerical Realization of Variational Methods [in Russian], Nauka, Moscow (1966).Google Scholar
  20. 20.
    R. I. Kachurovskii, “Nonlinear monotone operators in Banach spaces,” Uspekhi. Matem. Nauk,23, No. 2, 121–168 (1968).Google Scholar

Copyright information

© Consultants Bureau 1971

Authors and Affiliations

  • R. I. Kachurovskii

There are no affiliations available

Personalised recommendations