Skip to main content
Log in

Specific [3H]raclopride binding to neostriatal dopamine D2 receptors: Role of disulfide and sulfhydryl groups

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Receptor binding studies were performed in rabbit neostriatum (caudate-putamen) using the dopamine D2 antagonist [3H]raclopride. Treatment of the membrane preparations with the reducing agent L-dithiothreitol (L-DTT) as well as with the alkylating compoundN-ethylmaleimide (NEM), produced dose-dependent decreases of specific [3H]raclopride binding; the IC50 values were of 3.1 and 1.2 mM, respectively. Saturation experiments showed that the reduction of disulfide (-S-S-) bonds by L-DTT (1 mM) decreased the number of binding sites, with only a slight increase in the affinity. On the other hand, alkylation of sulfhydryl (-SH) groups by NEM (1mM) decreased both receptor number and affinity. The properties of the remaining binding sites were examined in competition curves with the physiological substrate dopamine and the dopaminergic antagonist (+)butaclamol. The IC50 values for (+)butaclamol in control and in L-DTT and NEM treated membranes were between 3.4 and 4.8 nM, with Hill coefficients (nH) of 1, indicating that the remaining binding sites conserved a high affinity for antagonist binding. In the case of dopamine, the curves were shallow (nH 0.45–0.64) and both compounds increased the IC50 from 0.7 μM (control) to 8 μM and 11 μM, for L-DTT and NEM respectively. Iterative analysis revealed that L-DTT produced a very important (>60%) decrease in the number of high-affinity (RH) binding. After NEM, there was a decrease in both the number of (RH) and the affinity (KH) of the high-affinity binding sites, and in the affinity (KL) of the low-affinity sites. These results demonstrate the participation of-S-S- and-SH groups in the agonist conformation of theprimary ligand recognition site of the dopamine D2 receptor. Alternatively,-S-S-and-SH groups could be related to the coupling of the primary ligand recognition protein with adenylate cyclase by means of an inhibitory type ofG protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kebabian, J., and Calne D. B. 1979. Multiple receptors for dopamine. Nature 277:93–96.

    Google Scholar 

  2. Seeman, P. 1980. Brain dopamine receptors. Pharmacol. Rev. 32:229–313.

    Google Scholar 

  3. Creese, I., Sibley, D. R., Hamblin, M. W., and Leff S. E. 1983. The classification of dopamine receptors: relationship to radioligand binding. Annu. Rev. Neurosci. 6:43–71.

    Google Scholar 

  4. Dearry, A., Gingrich, J. A., Falardeau, P., Fremeau, R. T. Jr., Bates, M. D., and Caron, M. G. 1990. Molecular cloning and expression of the gene for the human D1 dopamine receptor. Nature 347:72–76.

    Google Scholar 

  5. Zhou, Q.-Y., Grandy, D. K., Thambi, L., Kushner, J. A., Van Tol, H. H. M., Cone, R., Prignow, D., Salon, J., Bunzow, J. R., and Civelli, O. 1990. Cloning and expression of human and rat D1 dopamine receptors. Nature 347:76–80.

    Google Scholar 

  6. Sunahara, R. K., Niznik, H. B., Weiner, D. M., Stormann, T. M., Brann, M. R., Kennedy, J. L., Gelernter, J. E., Rozmahelli, R., Yang, Y., Israel, Y., Seeman, P., and O'Dowd, B. F. 1990. Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347:80–83.

    Google Scholar 

  7. Grandy, D. K., Marchionni, M. A., Makam, H., Stofko, R. E., Alfano, M., Frothingham, L., Fischer, J. B., Burke-Howie, K. J., Bunzow, J. R., Server, A. C., and Civelli, O. 1989. Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc. Natl. Acad. Sci. USA 86:9762–9766.

    Google Scholar 

  8. Stormann, T. M., Gdula, D. C., Weiner, D. M., and Brann, M. R. 1989. Molecular cloning and expression of a dopamine D2 receptor from human retina. Mol. Pharmacol. 37:1–6.

    Google Scholar 

  9. Chio, C. L., Hess, G. F., Graham, R. S., and Huff, R. M. 1990. A second molecular form of D2 dopamine receptor in rat and bovine caudate nucleus. Nature 343:266–269.

    Google Scholar 

  10. Sokoloff, P., Giros, B., Martres, M.-P., Bouthenet, M.-L., and Schwartz, J.-C. 1990. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151.

    Google Scholar 

  11. Van Tol, H. H. M., Bunzow, J. R., uan,.-C., Suhanara, R. K., Seeman, P., Niznick, H. B., and Civelli, O. 1991. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614.

    Google Scholar 

  12. Suhanara, R. K., Guan, H.-C., O'Dowd, B. F., Seeman, P., Laurier, L. G., Ng, G., George, S. R., Torchia, J., Van Tol, H. H. M., and Niznick, H. B. 1991. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine that D1. 1991. Nature 350:614–619.

    Google Scholar 

  13. De Camilli, P., Macconi, D., and Spada, A. 1979. Dopamine inhibits adenylate cyclase in human prolactin-secreting pituitary adenomas. Nature 278:252–254.

    Google Scholar 

  14. McDonald, W. M., Sibley, D. R., Kilpatrick, B. F., and Caron, M. G. 1984. Dopaminergic inhibition of adenylate cyclase correlates with high affinity agonist binding to anterior pituitary D2 dopamine receptors. Mol. Cell. Endocrinol. 36:201–209.

    Google Scholar 

  15. Onali, P., Olianas, M. C., and Gessa, G. L. 1985. Characterization of dopamine receptors mediating inhibition of adenylate cyclase activity in rat striatum. Mol. Pharmacol. 28:138–145.

    Google Scholar 

  16. De Lean, A., Kilpatrick, B. F., and Caron, M. G. 1982. Dopamine receptor of the porcine anterior pituitary gland. Evidence for two affinity states discriminated by both agonists and antagonists. Mol. Pharmacol. 22:290–297.

    Google Scholar 

  17. Sibley, D. R., De Lean, A., and Creese, I. 1982. Anterior pituitary dopamine receptors. Demonstration of interconvertible high and low affinity states of the D-2 dopamine receptor. J. Biol. Chem. 257:6351–6361.

    Google Scholar 

  18. Wreggett, K. A., and Seeman, P. 1984. Agonist high-and low-affinity states of the D2-dopamine receptor in calf brain. Partial conversion by guanine nucleotides. Mol. Pharmacol. 25:10–17.

    Google Scholar 

  19. Grigoriadis, D., and Seeman, P. 1985. Complete conversion of brain D2 receptors from high-to low-affinity state for dopamine agonists, using sodium ions and guanine nucleotide. J. Neurochem. 44:1925–1935.

    Google Scholar 

  20. Reader, T. A., Boulianne, S., Molina-Holgado, E., and Dewar, K. M. 1990. Effects of monovalent cations on neostriatal dopamine D2 receptors labeled with [3H]raclopride. Biochem. Pharmacol. 40:1739–1746.

    Google Scholar 

  21. Cleland, W. W. 1964. Dithiothreitol, a new protective reagent for SH groups. Biochemistry 3:480–482.

    Google Scholar 

  22. Quennedy, M.-C., Bockaert, J., and Ruout, B. 1984. Direct and indirect effects of sulfhydryl blocking agents on agonist and antagonist binding to central α1− and α2−adrenoceptors. Biochem. Pharmacol. 33:3923–3928.

    Google Scholar 

  23. Reader, T. A., Brière, R., and Grondin, L. 1986. Alpha-1 and alpha-2 adrenoceptor binding in cerebral cortex: role of disulfide and sulfhydryl groups. Neurochem Res. 11:9–27.

    Google Scholar 

  24. Stadel, J. M., and Lefkowitz, R. J. 1979. Multiple reactive sulfhydryl groups modulate the function of adenylate cyclase coupledbeta-adrenergic receptors. Mol. Pharmacol. 16:709–718.

    Google Scholar 

  25. Moxham, C. P., and Malbon, C. C. 1985. Fat cell β1−adrenergic receptor: structural evidence for existence of disulfide bridges essential for ligand binding. Biochemistry 24:6072–6077.

    Google Scholar 

  26. Sidhu, A., Kassis, S., Kebabian, J. W., and Fishman, P. H. 1986. Sulfhydryl group(s) in the ligand binding site of the D-1 dopamine receptor: specific protection by agonist and antagonist. Biochemistry 25:6695–6701.

    Google Scholar 

  27. Braestrup, C., and Andersen, P. H. 1987. Effects of heavy metal cations and other sulfhydryl reagents on brain dopamine D1 receptors: evidence for involvement of a thiol group in the conformation of the active site. J. Neurochem. 48:1667–1672.

    Google Scholar 

  28. Dewar, K. M., and Reader, T. A. 1989. Specific [3H]SCH23390 binding to dopamine D1 receptors in cerebral cortex and neostriatum: role of disulfide and sulfhydryl groups. J. Neurochem. 52:472–482.

    Google Scholar 

  29. Freedman, S. B., Poat, J. A., and Woodruff, G. N. 1982. Influence of sodium and sulphydryl groups on [3H]sulpiride binding sites in rat striatal membranes. J. Neurochem. 38:1459–1465.

    Google Scholar 

  30. Kilpatrick, B. F., De Lean, A., and Caron, M. G. 1982. Dopamine receptor of the porcine anterior pituitary gland. Effects ofN-ethylmaleimide and heat on ligand binding mimic the effects of guanine nucleotides. Mol. Pharmacol. 22:298–303.

    Google Scholar 

  31. Sibley, D. R., and Creese, I. 1983. Regulation of ligand binding to pituitary D-2 dopaminergic receptors. Effects of divalent cations and functional group modification. J. Biol. Chem. 258:4957–4965.

    Google Scholar 

  32. Scheuhammer, A. M., and Cherian, M. G. 1985. Effects of heavy metal cations, sulfhydryl reagents and other chemical agents on striatal D2 dopamine receptors. Biochem. Pharmacol. 34:3405–3413.

    Google Scholar 

  33. Malbon, C. C., George, S. T., and Moxham, C. P. 1987. Intramolecular disulfide bridges: avenues to receptor activation. Trends Biochem. Sci. 12:172–175.

    Google Scholar 

  34. Köhler, C., Hall, H., Örgen, S.-O., and Gawell, L. 1985. Specificin vitro andin vivo binding of3H-raclopride. A potent substituted benzamide drug with high affinity for dopamine D-2 receptors in the rat brain. Biochem. Pharmacol. 34:2251–2259.

    Google Scholar 

  35. Dewar, K. M., and Reader, T. A. 1989. Distribution of dopamine D1 and D2 receptors in rabbit cortical areas, hippocampus, and neostriatum in relation to dopamine contents. Synapse 4:378–386.

    Google Scholar 

  36. Dewar, K. M., Montreuil, B., Grondin, L., and Reader, T. A. 1989. Dopamine D2 receptors labeled with [3H]raclopride in rat and rabbit brains. Equilibrium binding, kinetics, distribution and selectivity. J. Pharmacol. Exp. Ther. 250:696–706.

    Google Scholar 

  37. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  38. Barlow, R. B. 1983. Biodata Handling with Microcomputers. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  39. Munson, P. J., and Rodbard, D. 1980. LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Ann Biochem. 107:220–239.

    Google Scholar 

  40. McPherson, G. A. 1985. Analysis of radioligand binding experiments: A collection of computer programs for the IBM PC. J. Pharmacol. Methods 14:213–228.

    Google Scholar 

  41. Scatchard, G. 1949. The attractions of proteins for small molecules and ions. Ann. NY Acad. Sci. 51:660–672.

    Google Scholar 

  42. Cheng, Y.-C., and Prusoff, W. H. 1973. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–3108.

    Google Scholar 

  43. Stefanini, E., Marchisio, A. M., Devoto, P., Vernaleone, F., Collu, R., and Spano, P. F. 1980. Sodium-dependent interaction of benzamides with dopamine receptors. Brain. Res. 198:229–233.

    Google Scholar 

  44. Duman, R. S., Terwilliger, R. Z., Nestler, E. J., and Tallman, J. F. 1989. Sodium and potassium regulation of guanine nucleotide-stimulating adenylate cyclase in brain. Biochem. Pharmacol. 38:1909–1814.

    Google Scholar 

  45. Herdon, H. 1988. N-Ethylmaleimide inactivates adenylate cyclase-coupled but not presynaptic striatal D-2 receptor systems. Eur. J. Pharmacol. 154:115–116.

    Google Scholar 

  46. Woodruff, G., and Freedman, S. B. 1983. Sulpiride binding in rat striatum-effect of dopamine agonists and sulphydryl group reagents. Acta Pharm. Suec. Suppl. 1:119–129.

    Google Scholar 

  47. Parker, R. B., and Waud, D. R. 1971. Pharmacological estimation of drug-receptor dissociation constants. Statistical evaluation. I. Agonists. J. Pharmacol. Exp. Ther. 177:1–12.

    Google Scholar 

  48. Leatherbarrow, R. J. 1987. Enzfitter, A Non-Linear Regression Data Analysis Program for the IBM PC (and True Compatibles). Elsevier Science Publishers, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reader, T.A., Molina-Holgado, E., Lima, L. et al. Specific [3H]raclopride binding to neostriatal dopamine D2 receptors: Role of disulfide and sulfhydryl groups. Neurochem Res 17, 749–759 (1992). https://doi.org/10.1007/BF00969008

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969008

Key Words

Navigation