Neurochemical Research

, Volume 17, Issue 8, pp 749–759 | Cite as

Specific [3H]raclopride binding to neostriatal dopamine D2 receptors: Role of disulfide and sulfhydryl groups

  • Tomás A. Reader
  • Eduardo Molina-Holgado
  • Lucimey Lima
  • Sylvie Boulianne
  • Karen M. Dewar
Original Articles


Receptor binding studies were performed in rabbit neostriatum (caudate-putamen) using the dopamine D2 antagonist [3H]raclopride. Treatment of the membrane preparations with the reducing agent L-dithiothreitol (L-DTT) as well as with the alkylating compoundN-ethylmaleimide (NEM), produced dose-dependent decreases of specific [3H]raclopride binding; the IC50 values were of 3.1 and 1.2 mM, respectively. Saturation experiments showed that the reduction of disulfide (-S-S-) bonds by L-DTT (1 mM) decreased the number of binding sites, with only a slight increase in the affinity. On the other hand, alkylation of sulfhydryl (-SH) groups by NEM (1mM) decreased both receptor number and affinity. The properties of the remaining binding sites were examined in competition curves with the physiological substrate dopamine and the dopaminergic antagonist (+)butaclamol. The IC50 values for (+)butaclamol in control and in L-DTT and NEM treated membranes were between 3.4 and 4.8 nM, with Hill coefficients (nH) of 1, indicating that the remaining binding sites conserved a high affinity for antagonist binding. In the case of dopamine, the curves were shallow (nH 0.45–0.64) and both compounds increased the IC50 from 0.7 μM (control) to 8 μM and 11 μM, for L-DTT and NEM respectively. Iterative analysis revealed that L-DTT produced a very important (>60%) decrease in the number of high-affinity (RH) binding. After NEM, there was a decrease in both the number of (RH) and the affinity (KH) of the high-affinity binding sites, and in the affinity (KL) of the low-affinity sites. These results demonstrate the participation of-S-S- and-SH groups in the agonist conformation of theprimary ligand recognition site of the dopamine D2 receptor. Alternatively,-S-S-and-SH groups could be related to the coupling of the primary ligand recognition protein with adenylate cyclase by means of an inhibitory type ofG protein.

Key Words

D2 receptors neostriatum rabbit L-dithiothreitol N-ethylmaleimide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kebabian, J., and Calne D. B. 1979. Multiple receptors for dopamine. Nature 277:93–96.Google Scholar
  2. 2.
    Seeman, P. 1980. Brain dopamine receptors. Pharmacol. Rev. 32:229–313.Google Scholar
  3. 3.
    Creese, I., Sibley, D. R., Hamblin, M. W., and Leff S. E. 1983. The classification of dopamine receptors: relationship to radioligand binding. Annu. Rev. Neurosci. 6:43–71.Google Scholar
  4. 4.
    Dearry, A., Gingrich, J. A., Falardeau, P., Fremeau, R. T. Jr., Bates, M. D., and Caron, M. G. 1990. Molecular cloning and expression of the gene for the human D1 dopamine receptor. Nature 347:72–76.Google Scholar
  5. 5.
    Zhou, Q.-Y., Grandy, D. K., Thambi, L., Kushner, J. A., Van Tol, H. H. M., Cone, R., Prignow, D., Salon, J., Bunzow, J. R., and Civelli, O. 1990. Cloning and expression of human and rat D1 dopamine receptors. Nature 347:76–80.Google Scholar
  6. 6.
    Sunahara, R. K., Niznik, H. B., Weiner, D. M., Stormann, T. M., Brann, M. R., Kennedy, J. L., Gelernter, J. E., Rozmahelli, R., Yang, Y., Israel, Y., Seeman, P., and O'Dowd, B. F. 1990. Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347:80–83.Google Scholar
  7. 7.
    Grandy, D. K., Marchionni, M. A., Makam, H., Stofko, R. E., Alfano, M., Frothingham, L., Fischer, J. B., Burke-Howie, K. J., Bunzow, J. R., Server, A. C., and Civelli, O. 1989. Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc. Natl. Acad. Sci. USA 86:9762–9766.Google Scholar
  8. 8.
    Stormann, T. M., Gdula, D. C., Weiner, D. M., and Brann, M. R. 1989. Molecular cloning and expression of a dopamine D2 receptor from human retina. Mol. Pharmacol. 37:1–6.Google Scholar
  9. 9.
    Chio, C. L., Hess, G. F., Graham, R. S., and Huff, R. M. 1990. A second molecular form of D2 dopamine receptor in rat and bovine caudate nucleus. Nature 343:266–269.Google Scholar
  10. 10.
    Sokoloff, P., Giros, B., Martres, M.-P., Bouthenet, M.-L., and Schwartz, J.-C. 1990. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151.Google Scholar
  11. 11.
    Van Tol, H. H. M., Bunzow, J. R., uan,.-C., Suhanara, R. K., Seeman, P., Niznick, H. B., and Civelli, O. 1991. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614.Google Scholar
  12. 12.
    Suhanara, R. K., Guan, H.-C., O'Dowd, B. F., Seeman, P., Laurier, L. G., Ng, G., George, S. R., Torchia, J., Van Tol, H. H. M., and Niznick, H. B. 1991. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine that D1. 1991. Nature 350:614–619.Google Scholar
  13. 13.
    De Camilli, P., Macconi, D., and Spada, A. 1979. Dopamine inhibits adenylate cyclase in human prolactin-secreting pituitary adenomas. Nature 278:252–254.Google Scholar
  14. 14.
    McDonald, W. M., Sibley, D. R., Kilpatrick, B. F., and Caron, M. G. 1984. Dopaminergic inhibition of adenylate cyclase correlates with high affinity agonist binding to anterior pituitary D2 dopamine receptors. Mol. Cell. Endocrinol. 36:201–209.Google Scholar
  15. 15.
    Onali, P., Olianas, M. C., and Gessa, G. L. 1985. Characterization of dopamine receptors mediating inhibition of adenylate cyclase activity in rat striatum. Mol. Pharmacol. 28:138–145.Google Scholar
  16. 16.
    De Lean, A., Kilpatrick, B. F., and Caron, M. G. 1982. Dopamine receptor of the porcine anterior pituitary gland. Evidence for two affinity states discriminated by both agonists and antagonists. Mol. Pharmacol. 22:290–297.Google Scholar
  17. 17.
    Sibley, D. R., De Lean, A., and Creese, I. 1982. Anterior pituitary dopamine receptors. Demonstration of interconvertible high and low affinity states of the D-2 dopamine receptor. J. Biol. Chem. 257:6351–6361.Google Scholar
  18. 18.
    Wreggett, K. A., and Seeman, P. 1984. Agonist high-and low-affinity states of the D2-dopamine receptor in calf brain. Partial conversion by guanine nucleotides. Mol. Pharmacol. 25:10–17.Google Scholar
  19. 19.
    Grigoriadis, D., and Seeman, P. 1985. Complete conversion of brain D2 receptors from high-to low-affinity state for dopamine agonists, using sodium ions and guanine nucleotide. J. Neurochem. 44:1925–1935.Google Scholar
  20. 20.
    Reader, T. A., Boulianne, S., Molina-Holgado, E., and Dewar, K. M. 1990. Effects of monovalent cations on neostriatal dopamine D2 receptors labeled with [3H]raclopride. Biochem. Pharmacol. 40:1739–1746.Google Scholar
  21. 21.
    Cleland, W. W. 1964. Dithiothreitol, a new protective reagent for SH groups. Biochemistry 3:480–482.Google Scholar
  22. 22.
    Quennedy, M.-C., Bockaert, J., and Ruout, B. 1984. Direct and indirect effects of sulfhydryl blocking agents on agonist and antagonist binding to central α1− and α2−adrenoceptors. Biochem. Pharmacol. 33:3923–3928.Google Scholar
  23. 23.
    Reader, T. A., Brière, R., and Grondin, L. 1986. Alpha-1 and alpha-2 adrenoceptor binding in cerebral cortex: role of disulfide and sulfhydryl groups. Neurochem Res. 11:9–27.Google Scholar
  24. 24.
    Stadel, J. M., and Lefkowitz, R. J. 1979. Multiple reactive sulfhydryl groups modulate the function of adenylate cyclase coupledbeta-adrenergic receptors. Mol. Pharmacol. 16:709–718.Google Scholar
  25. 25.
    Moxham, C. P., and Malbon, C. C. 1985. Fat cell β1−adrenergic receptor: structural evidence for existence of disulfide bridges essential for ligand binding. Biochemistry 24:6072–6077.Google Scholar
  26. 26.
    Sidhu, A., Kassis, S., Kebabian, J. W., and Fishman, P. H. 1986. Sulfhydryl group(s) in the ligand binding site of the D-1 dopamine receptor: specific protection by agonist and antagonist. Biochemistry 25:6695–6701.Google Scholar
  27. 27.
    Braestrup, C., and Andersen, P. H. 1987. Effects of heavy metal cations and other sulfhydryl reagents on brain dopamine D1 receptors: evidence for involvement of a thiol group in the conformation of the active site. J. Neurochem. 48:1667–1672.Google Scholar
  28. 28.
    Dewar, K. M., and Reader, T. A. 1989. Specific [3H]SCH23390 binding to dopamine D1 receptors in cerebral cortex and neostriatum: role of disulfide and sulfhydryl groups. J. Neurochem. 52:472–482.Google Scholar
  29. 29.
    Freedman, S. B., Poat, J. A., and Woodruff, G. N. 1982. Influence of sodium and sulphydryl groups on [3H]sulpiride binding sites in rat striatal membranes. J. Neurochem. 38:1459–1465.Google Scholar
  30. 30.
    Kilpatrick, B. F., De Lean, A., and Caron, M. G. 1982. Dopamine receptor of the porcine anterior pituitary gland. Effects ofN-ethylmaleimide and heat on ligand binding mimic the effects of guanine nucleotides. Mol. Pharmacol. 22:298–303.Google Scholar
  31. 31.
    Sibley, D. R., and Creese, I. 1983. Regulation of ligand binding to pituitary D-2 dopaminergic receptors. Effects of divalent cations and functional group modification. J. Biol. Chem. 258:4957–4965.Google Scholar
  32. 32.
    Scheuhammer, A. M., and Cherian, M. G. 1985. Effects of heavy metal cations, sulfhydryl reagents and other chemical agents on striatal D2 dopamine receptors. Biochem. Pharmacol. 34:3405–3413.Google Scholar
  33. 33.
    Malbon, C. C., George, S. T., and Moxham, C. P. 1987. Intramolecular disulfide bridges: avenues to receptor activation. Trends Biochem. Sci. 12:172–175.Google Scholar
  34. 34.
    Köhler, C., Hall, H., Örgen, S.-O., and Gawell, L. 1985. Specificin vitro andin vivo binding of3H-raclopride. A potent substituted benzamide drug with high affinity for dopamine D-2 receptors in the rat brain. Biochem. Pharmacol. 34:2251–2259.Google Scholar
  35. 35.
    Dewar, K. M., and Reader, T. A. 1989. Distribution of dopamine D1 and D2 receptors in rabbit cortical areas, hippocampus, and neostriatum in relation to dopamine contents. Synapse 4:378–386.Google Scholar
  36. 36.
    Dewar, K. M., Montreuil, B., Grondin, L., and Reader, T. A. 1989. Dopamine D2 receptors labeled with [3H]raclopride in rat and rabbit brains. Equilibrium binding, kinetics, distribution and selectivity. J. Pharmacol. Exp. Ther. 250:696–706.Google Scholar
  37. 37.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.Google Scholar
  38. 38.
    Barlow, R. B. 1983. Biodata Handling with Microcomputers. Elsevier Science Publishers, Amsterdam.Google Scholar
  39. 39.
    Munson, P. J., and Rodbard, D. 1980. LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Ann Biochem. 107:220–239.Google Scholar
  40. 40.
    McPherson, G. A. 1985. Analysis of radioligand binding experiments: A collection of computer programs for the IBM PC. J. Pharmacol. Methods 14:213–228.Google Scholar
  41. 41.
    Scatchard, G. 1949. The attractions of proteins for small molecules and ions. Ann. NY Acad. Sci. 51:660–672.Google Scholar
  42. 42.
    Cheng, Y.-C., and Prusoff, W. H. 1973. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–3108.Google Scholar
  43. 43.
    Stefanini, E., Marchisio, A. M., Devoto, P., Vernaleone, F., Collu, R., and Spano, P. F. 1980. Sodium-dependent interaction of benzamides with dopamine receptors. Brain. Res. 198:229–233.Google Scholar
  44. 44.
    Duman, R. S., Terwilliger, R. Z., Nestler, E. J., and Tallman, J. F. 1989. Sodium and potassium regulation of guanine nucleotide-stimulating adenylate cyclase in brain. Biochem. Pharmacol. 38:1909–1814.Google Scholar
  45. 45.
    Herdon, H. 1988. N-Ethylmaleimide inactivates adenylate cyclase-coupled but not presynaptic striatal D-2 receptor systems. Eur. J. Pharmacol. 154:115–116.Google Scholar
  46. 46.
    Woodruff, G., and Freedman, S. B. 1983. Sulpiride binding in rat striatum-effect of dopamine agonists and sulphydryl group reagents. Acta Pharm. Suec. Suppl. 1:119–129.Google Scholar
  47. 47.
    Parker, R. B., and Waud, D. R. 1971. Pharmacological estimation of drug-receptor dissociation constants. Statistical evaluation. I. Agonists. J. Pharmacol. Exp. Ther. 177:1–12.Google Scholar
  48. 48.
    Leatherbarrow, R. J. 1987. Enzfitter, A Non-Linear Regression Data Analysis Program for the IBM PC (and True Compatibles). Elsevier Science Publishers, Amsterdam.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Tomás A. Reader
    • 1
  • Eduardo Molina-Holgado
    • 1
  • Lucimey Lima
    • 2
  • Sylvie Boulianne
    • 1
  • Karen M. Dewar
    • 3
  1. 1.Centre de recherche en sciences neurologiques, Département de physiologie, Faculté de MédecineUniversité de MontréalMontréalCanada
  2. 2.Laboratorio de NeuroquímicaInstituto Venezolano de Investigaciones CientíficasCaracasVenezuela
  3. 3.Centre de recherche psychiatrique Fernand-Séguin, Département de psychiatrie, Faculté de MédecineUniversité de MontréalMontréalCanada

Personalised recommendations