Advertisement

Neurochemical Research

, Volume 19, Issue 12, pp 1545–1550 | Cite as

Tunicamycin inhibits prostaglandin F receptor-mediated phosphoinositide hydrolysis in cultured rat astrocytes

  • Jun-ichi Kitanaka
  • Takako Hamano
  • Masayuki Gotoh
  • Hitoshi Hashimoto
  • Akemichi Baba
Original Articles

Abstract

Effect of tunicamycin, an inhibitor of N-linked glycosylation, on prostaglandin (PG) F-stimulated phosphoinositide (PI) hydrolysis was examined in cultured rat astrocytes. Pretreatment of cultured astrocytes with tunicamycin (25–250 ng/ml) inhibited subsequent PGF (1 μM)-stimulated PI hydrolysis in concentration- and time-dependent manners. The inhibition completely recovered after removal of tunicamycin and re-incubation for 12 h. Tunicamycin pretreatment (100 ng/ml for 12 h) significantly blocked [35S]methionine incorporation into cultured astrocytes, but cell viability was not affected under the condition. Inhibitors of processing of N-linked sugar chains such as bromoconduritol, 1-deoxymannojirimycin, and swainsonine had no effect on PI response to PGF. These observations suggest that PGF receptor is N-linked glycosylated.

Key Words

Prostaglandin F receptors tunicamycin N-Linked glycosylation phosphoinositide hydrolysis astrocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coleman, R. A., Kennedy, I., Humphrey, P. P. A., Bunce, K., and Lumley, P. 1989. Prostanoids and their receptors. Pages 643–714,in Hansch, C., Sammes, P. G., Taylor, J. B., and Emmett, J. C. (eds.), Comprehensive Medical Chemistry Vol. 3, Pergamon Press, Oxford.Google Scholar
  2. 2.
    Shimizu, T., and Wolfe, L. S. 1990. Arachidonic acid cascade and signal transduction. J. Neurochem. 55:1–15.PubMedGoogle Scholar
  3. 3.
    Sugimoto, Y., Hasumoto, K., Namba, T., Irie, A., Katsuyama, M., Negishi, M., Kakizuka, A., Narumiya, S., and Ichikawa, A. 1994. Cloning and expression of a cDNA for mouse prostaglandin F receptor. J. Biol. Chem. 269:1356–1360.PubMedGoogle Scholar
  4. 4.
    Sakamoto, K., Ezashi, T., Miwa, K., Okuda-Ashitaka, E., Houtani, T., Sugimoto, T., Ito, S., and Hayaishi, O. 1994. Molecular cloning and expression of a cDNA of the bovine prostaglandin F receptor. J. Biol. Chem. 269:3881–3886.PubMedGoogle Scholar
  5. 5.
    Abramovitz, M., Boie, Y., Nguyen, Y., Rushmore, T. H., Bayne, M. A., Metters, K. M., Slipetz, D. M., and Grygorczyk, R. 1994. Cloning and expression of a cDNA for the human prostanoid FP receptor. J. Biol. Chem. 269:2632–2636.PubMedGoogle Scholar
  6. 6.
    Kitanaka, J., Hashimoto, H., Sugimoto, Y., Negishi, M., Aino, H., Gotoh, M., Ichikawa, A., and Baba, A. 1994. Cloning and expression of a cDNA for rat prostaglandin F receptor. Prostaglandins, in press.Google Scholar
  7. 7.
    Morii, H., and Watanabe, Y. 1992. A possible role of carbohydrate moieties in prostaglandin D2 and prostaglandin E2 receptor proteins from the porcine temporal cortex. Arch. Biochem. Biophys. 292:121–127.PubMedGoogle Scholar
  8. 8.
    Yatsunami, K., Fujisawa, J., Hashimoto, H., Kimura, K., Takahashi, S., and Ichikawa, A. 1990. Effect of tunicamycin on functions of PGE1 receptors from mouse mastocytoma P-815 cells. Biochim. Biophys. Acta 1051:94–99.PubMedGoogle Scholar
  9. 9.
    Kitanaka, J., Onoe, H., and Baba, A. 1991. Astrocytes possess prostaglandin F receptors coupled to phospholipase C. Biochem. Biophys. Res. Commun. 178:946–952.PubMedGoogle Scholar
  10. 10.
    Ito, S., Sugama, K., Inagaki, N., Fukui, H., Giles, H., Wada, H., and Hayaishi, O. 1992. Type-1 and type-2 astrocytes are distinct targets for prostaglandins D2, E2, and F. Glia 6:67–74.PubMedGoogle Scholar
  11. 11.
    Kitanaka, J., Ishibashi, T., and Baba, A. 1993. Phloretin as an antagonist of prostaglandin F receptor in cultured rat astrocytes. J. Neurochem. 60:704–708.PubMedGoogle Scholar
  12. 12.
    Tkacz, J. S., and Lampen, J. O. 1975. Tunicamycin inhibition of polysioprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem. Biophys. Res. Commun. 65:248–257.PubMedGoogle Scholar
  13. 13.
    Elbein, A. D. 1987. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Ann. Rev. Biochem. 56:497–534.PubMedGoogle Scholar
  14. 14.
    Raff, M. C., Abney, E. R., Cohen, J., Lindsay, R., and Noble, M. 1983. Two types of astrocytes in cultures of developing rat white matter: Differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci. 3:1289–1300.PubMedGoogle Scholar
  15. 15.
    Berridge, M. J., Downes, C. P., and Hanley, M. R. 1982. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem J. 206:587–595.PubMedGoogle Scholar
  16. 16.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  17. 17.
    Shaikh, N. A., and Palmer, F. B. St. C. 1977. Phosphoinositide kinases in chick brain and sciatic nerve, a developmental study. J. Neurochem. 28:395–402.PubMedGoogle Scholar
  18. 18.
    Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63.PubMedGoogle Scholar
  19. 19.
    Wróblewski, F., and LaDue, J. S. 1955. Lactic dehydrogenase activity in blood. Proc. Soc. Exp. Biol. Med. 90:210–213.PubMedGoogle Scholar
  20. 20.
    Murphy, S., and Pearce, B. 1988. Functional receptors for neurotransmitters on astroglial cells. Neuroscience 22:381–394.Google Scholar
  21. 21.
    Hösli, E., and Hösli, L. 1993. Receptors for neurotransmitters on astrocytes in the mammalian central nervous system. Prog. Neurobiol. 40:477–506.PubMedGoogle Scholar
  22. 22.
    Mußhoff, U., Madeja, P., Bloms P., Müsch-Nittel, K., and Speckmann, E.-J. 1992. Tunicamycin-induced inhibition of functional expression of glutamate receptors in Xenopus oocytes. Neurosci. Lett. 147:163–166.PubMedGoogle Scholar
  23. 23.
    Liles, W. C., and Nathanson, N. M. 1986. Regulation of neuronal muscarinic acetylcholine receptor number by protein glycosylation. J. Neurochem. 46:89–95.PubMedGoogle Scholar
  24. 24.
    Cotechhia, S., Schwinn, D. A., Randall, R. R., Lefkowitz, R. J., Caron, M. G., and Kobilka, B. K. 1988. Molecular cloning and expression of the cDNA for the hamster 1550-1 receptor. Proc. Natl. Acad. Sci. U.S.A. 85:7159–7163.PubMedGoogle Scholar
  25. 25.
    Webb, T. E., Simon, J., Krishek, B. J., Bateson, A. N., Smart, T. G., King, B. F., Burnstock, G., and Barnard, E. A. 1993: Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett. 324:219–225.PubMedGoogle Scholar
  26. 26.
    Bousso-Mitter, D., Galron, R., and Sokolovsky, M. 1991. Endothelin/sarafotoxin receptor heterogeneity: Evidence for different glycosylation in receptors from different tissues. Biochem. Biophys. Res. Commun. 178:921–926.PubMedGoogle Scholar
  27. 27.
    Koch, H. U., Schwarz, R. T., and Scholtissek, C. 1979. Glucosamine itself mediates reversible inhibition of protein glycosylation: A study of glucosamine metabolism at inhibitory concentrations in influenzavirus-infected cells. Eur. J. Biochem. 94:515–522.PubMedGoogle Scholar
  28. 28.
    Reed, B. C., Ronnett, G. V., and Lane, M. D. 1981. Role of glycosylation and protein synthesis in insulin receptor metabolism by 3T3-L1 mouse adipocytes. Proc. Natl. Acad. Sci. USA 78:2908–2912.PubMedGoogle Scholar
  29. 29.
    Duronio, V., Jacobs, S., and Cuatrecasas, O. 1986. Complete glycosylation of the insulin and insulin-like growth factor-I receptors is not necessary for their biosynthesis and function: Use of swainsonine as an inhibitor in IM-9 cells. J. Biol. Chem. 261:970–975.PubMedGoogle Scholar
  30. 30.
    Prives, J. M., and Olden, K. 1980. Carbohydrate requirement for expression and stability of acetylcholine receptor on the surface of embryonic muscle cells in culture. Proc. Natl. Acad. Sci. USA 77:5263–5267.PubMedGoogle Scholar
  31. 31.
    Bhargava, G., and Makman, M. H. 1980. Effect of tunicamycin on the turnover of epidermal growth factor receptors in cultured calf aorta smooth muscle cells: Comparison with IMR-90 human lung fibroblasts. Biochim. Biophys. Acta 629:107–112.PubMedGoogle Scholar
  32. 32.
    Frost, G. H., Bergmann, J. S., and Carney, D. H. 1991. Glycosylation of high-affinity thrombin receptors appears necessary for thrombin binding. Biochem. Biophys. Res. Commun. 180:349–355.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Jun-ichi Kitanaka
    • 1
  • Takako Hamano
    • 1
  • Masayuki Gotoh
    • 1
  • Hitoshi Hashimoto
    • 1
  • Akemichi Baba
    • 1
  1. 1.Department of Pharmacology, Faculty of Pharmaceutical SciencesOsaka UniversitySuita, OsakaJapan

Personalised recommendations