Skip to main content
Log in

Presynaptic and postsynaptic effects of mercuric ions on guinea-pig ileum longitudinal muscle strip preparation

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The toxic effect of mercuric ions on intestinal cholinergic neurotransmission was investigated in vitro. Hg2+ inhibited the evoked release and enhanced the resting release of ACh. Smooth muscle contraction was irreversibly inhibited by Hg2+ in a concentration-dependent manner, and Na2EDTA did not antagonize this effect. We also investigated if Hg2+ enters the nerve terminal through Ca2+-channels, or Na+-channels, or both. The effects of mercuric ions obtained in our study were completely abolished by the combined administration of TTX and Co2+. It is suggested that the site of the action of mercuric ions is intracellular. We concluded that Hg2+ may interfere with cholinergic transmission by blocking [Ca2+]o-dependent release of ACh and by enhancing [Ca2+]o-independent resting release of ACh. The effect of Hg2+ was not only presynaptic since it also inhibited the effect of ACh on smooth muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodman and Gilman's 1990. The pharmacological basis of therapeutics. A. Goodman Gilman, T. W. Rall, A. S. Nies, P. Taylor (eds.), Pergamon Press, Inc.

  2. Fölkl, R. 1986. Munkaegeszsegugyi es munkavedelmi enciklopedia. Budapest, OMIKK, Pages 426–429, 1074–1081. (in Hungarian)

    Google Scholar 

  3. Venugopal, B., and Luckey, T. P. 1975. Toxicology of non-radioactive heavy metals and their salts. Environ. Qual. Saf. Suppl. 1:4–73.

    Google Scholar 

  4. Paton, W. D. M., and Vizi, E. S. 1969. The inhibitory action of noradrenaline and adrenaline on acetylcholine output by guineapig ileum longitudinal muscle strip. Br. J. Pharmacol. 35:10–28.

    PubMed  Google Scholar 

  5. Paton, W. D., and Zar, M. A., 1968. The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J. Physiol. (London) 194:13–33.

    Google Scholar 

  6. Paton, W. D. M., Vizi, E. S., and Zar, M. A. 1971. The mechanism of acetylcholine release from parasympathetic nerves. J. Physiol. (London) 215:819–848.

    Google Scholar 

  7. Somogyi, G. T. and Vizi, E. S. 1988. Evidence that cholinergic axon terminals are equipped with both muscarinic and adenosine receptors. Brain Res. Bull. 21:575–579.

    PubMed  Google Scholar 

  8. Kilbinger, H., and Wessler, I. 1980. Inhibition by acetylcholine of the stimulation-evoked release of [3H]acetylcholine from the guinea-pig myenteric plexus. Neuroscience 5:1331–1340.

    PubMed  Google Scholar 

  9. Vizi, E. S., Ono, K., Adam-Vizi, V., and Foldes, F. F. 1984. Presynaptic inhibitory effect of Met-enkephalin on 14C-acetylcholine release from the myenteric plexus and its interaction with muscarinic negative feedback inhibition. J. Pharmacol. Exp. Ther. 230:493–499.

    PubMed  Google Scholar 

  10. Vizi, E. S., Torok, T., Seregi, A., Serfozo, P., and Adam-Vizi, V. 1982. Na−K-activated ATPase and the release of acetylcholine and noradrenaline. J. Physiol. (Paris) 78:399–406.

    Google Scholar 

  11. Vizi, E. S., and Bernath, S. 1987. Inhibitory effect of ionized free intracellular calcium enhanced by ruthenium red and m-chlorocarbonylcyanide phenyl hydrazon on the evoked release of acetylcholine. Biochem. Pharmacol. 36:3683–3687.

    PubMed  Google Scholar 

  12. Vizi, E. S. 1978. Na+, K+-activated adenosinetriphosphatase as a trigger in transmitter release. Neuroscience 3:367–384.

    PubMed  Google Scholar 

  13. Vizi, E. S., Oberfrank, F. 1992. Na+/K+-ATPase, its endogenous ligands and neurotransmitter release. Neurochem. Int. 20:11–17.

    PubMed  Google Scholar 

  14. Juang, M. S. 1976. An electrophysiological study of the action of methylmercuric chloride and mercuric chloride on the sciatic nerve-sartorius muscle preparation of the frog. Toxicol. Appl. Pharmacol. 37:339–348.

    PubMed  Google Scholar 

  15. Manalis, R. S., and Cooper, G. P. 1975. Evoked transmitter release increased by inorganic mercury at frog neuromuscular junction. Nature 257:690–691.

    PubMed  Google Scholar 

  16. Miyamoto, M. D. 1983. Hg2+ causes neurotoxicity at an intracellular site following entry through Na and Ca channels. Brain Res. 267:375–379.

    PubMed  Google Scholar 

  17. Atchison, W. D. 1987. Effects of activation of sodium and calcium entry on spontaneous release of acetylcholine induced by methylmercury. J. Pharmacol. Exp. Ther. 241:131–139.

    PubMed  Google Scholar 

  18. Atchison, W. D. 1988. Effects of neurotoxicants on synaptic transmission: lessons learned from electrophysiological studies. Neurotoxicol.-Teratol. 10:393–416.

    Google Scholar 

  19. Levesque, P. C., Hare, M. F., and Atchison, W. D. 1992. Inhibition of mitochondrial Ca2+ release diminishes the effectiveness of methyl mercury to release acetylcholine from synaptosomes. Tox. Appl. Pharmacol. 115:11–20.

    Google Scholar 

  20. Denny, M. F., Hare, M. H., and Atchison, W. D. 1993. Methylmercury alters intrasynaptosomal concentrations of endogenous polyvalent cations. Toxicol. Appl. Pharmacol. 122:222–232.

    PubMed  Google Scholar 

  21. Rossi, A. D., Larsson, O., Manzo, L., Orrenins, S., Vahler, M., Berggren, P.-O., and Nicotera, P. 1993. Modification of Ca2+ signaling by inorganic mercury in PC12 cells. FASEB J. 7:1507–1514.

    PubMed  Google Scholar 

  22. Vizi, E. S., Bernath, S., Kapocsi, J., and Serfozo, P. 1986. Transmitter release from the cytoplasm is of physiological importance but not subject to presynaptic modulation. J. Physiol. (Paris) 81:283–288.

    Google Scholar 

  23. Dolezal, V., Somogyi, G. T., Bernath, S., Tucek, S., and Vizi, E. S. 1987. Effect of lanthanum on the release of acetylcholine from the myenteric plexus and on its activation by ouabain and electrical stimulation. J. Neurochem. 49:503–506.

    PubMed  Google Scholar 

  24. Adam-Vizi, V. 1992. External Ca2+-independent release of neurotransmitter. J. Neurochem. 58:395–405.

    PubMed  Google Scholar 

  25. Lees, G. J. 1991. Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res. Rev. 16:283–300.

    PubMed  Google Scholar 

  26. Vizi, E. S. 1972. Stimulation by inhibition of (Na+,K+,Mg2+)-activated ATPase, of acetylcholine release in cortical slices from rat brain. J. Physiol. (Lond.) 226:95–117.

    Google Scholar 

  27. Anner, R., and Moormayer, M. 1992. Mercury block Na−K ATPase by a ligand-dependent and reversible mechanism. Am. J. Physiol. 262:F830-F836.

    PubMed  Google Scholar 

  28. Anner, R., and Moormayer, M. 1992. Mercury inhibits Na/K-ATPase primarily at the cytoplasmic side. Am. J. Physiol. 262:F843-F848.

    PubMed  Google Scholar 

  29. Godfraind, M. 1986. Calcium antagonist and calcium entry blockade. Pharmacol. Rev. 38:321–416.

    PubMed  Google Scholar 

  30. Hurwitz, L. 1986. Pharmacology of calcium channels and smooth muscle. Annu. Rev. Pharmacol. Toxicol. 26:225–258.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abram, Z., Korossy, S. Presynaptic and postsynaptic effects of mercuric ions on guinea-pig ileum longitudinal muscle strip preparation. Neurochem Res 19, 1467–1472 (1994). https://doi.org/10.1007/BF00968992

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968992

Key Words

Navigation