Siberian Mathematical Journal

, Volume 25, Issue 3, pp 461–473 | Cite as

Varieties with a countable number of subquasivarieties

  • M. V. Sapir
Article

Keywords

Countable Number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. V. Sapir, “Varieties with a finite number of subquasivarieties,” Sib. Mat. Zh.,22, No. 6, 168–187 (1981).Google Scholar
  2. 2.
    A. N. Fedorov, “Subquasivarieties of nilpotent minimal non-Abelian varieties of groups,” Sib. Mat. Zh.,21, No. 6, 117–131 (1980).Google Scholar
  3. 3.
    A. Yu. Ol'shanskii, “Conditional identities in finite groups,” Sib. Mat. Zh.,15, No. 6, 1409–1413 (1974).Google Scholar
  4. 4.
    M. V. Sapir, “Quasivarieties of semigroups,” XV All-Union Algebraic Conference, Lecture Theses 2, Krasnoyarsk (1979), pp. 132–133.Google Scholar
  5. 5.
    É. A. Golubov and M. V. Sapir, “Varieties of finitely approximable semigroups,” Dokl. Akad. Nauk SSSR,247, No. 5, 1037–1041 (1979).Google Scholar
  6. 6.
    J. M. Brady, “On solvable just-non-Cross varieties of groups,” Bull. Austr. Math. Soc.,3, No. 3, 313–323 (1970).Google Scholar
  7. 7.
    A. H. Clifford and G. B. Preston, Algebraic Theory of Semigroups, Amer. Math. Soc. (1967).Google Scholar
  8. 8.
    M. Petrich, Introduction to Semigroups, Merrill Books, Columbus (Ohio) (1973).Google Scholar
  9. 9.
    M. I. Kargapolov and Yu. I. Merzlyakov, Foundations of Groups Theory [in Russian], Nauka, Moscow (1972).Google Scholar
  10. 10.
    I. V. L'vov, “Varieties of associative rings. I,” Algebra Logika,12, No. 3, 269–297, (1973).Google Scholar
  11. 11.
    A. P. Zamyatin, “Varieties of associative rings whose elementary theory is solvable,” Dokl. Akad. Nauk SSSR,17, 996–999 (1976).Google Scholar
  12. 12.
    M. Petrich, “All subvarieties of a certain variety of semigroups,” Semigroup Forum,4, No. 1, 104–152 (1974).Google Scholar
  13. 13.
    É. A. Golubov, “Finite separability in semigroups,” Sib. Mat. Zh.,11, No. 6, 1247–1263 (1970).Google Scholar
  14. 14.
    T. Evans, “The lattice of semigroup varieties,” Semigroup Forum,2, No. 1, 1–43 (1971).Google Scholar
  15. 15.
    Yu. L. Ershov, “On elementary theories of groups,” Dokl. Akad. Nauk SSSR,203, No. 6, 1240–1243 (1972).Google Scholar
  16. 16.
    A. Yu. Ol'shanskii, “Varities of finitely approximable groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,33, No. 6, 915–927 (1969).Google Scholar
  17. 17.
    A. Yu. Ol'shanskii, “Solvable almost Cross varieties of groups,” Mat. Sb.,85, No. 1, 115–131 (1971).Google Scholar
  18. 18.
    M. V. Sapir, “The lattice of quasivarieties of idempotent semigroups,” in: Studies in Contemporary Algebra [in Russian], Sverdlovsk (1979), pp. 158–169.Google Scholar
  19. 19.
    A. A. Vinogradov, “Quasivarieties of Abelian groups,” Algebra Logika,4, No. 6, 15–19 (1965).Google Scholar
  20. 20.
    M. V. Sapir, “On quasivarieties generated by finite semigroups,” Semigroup Forum,20, No. 1, 73–88 (1980).Google Scholar
  21. 21.
    Sverdlovsk Notebook (unsolved problems in the theory of semigroups), 2, Serdlovsk (1979(.Google Scholar
  22. 22.
    H. Neumann, Varieties of Groups [Russian translation], Mir, Moscow (1969).Google Scholar
  23. 23.
    L. A. Shemetkov, Formations of Finite Groups [in Russian], Nauka, Moscow (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • M. V. Sapir

There are no affiliations available

Personalised recommendations