Advertisement

Siberian Mathematical Journal

, Volume 25, Issue 3, pp 339–347 | Cite as

Isometry of domains inRn and relative isometry of their boundaries

  • V. A. Aleksandrov
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. D. Aleksandrov, Intrinsic Geometry of Convex Surfaces, Akademie-Verlag, Berlin (1955).Google Scholar
  2. 2.
    F. John, “Rotation and strain,” Commun. Pure Appl. Math.,16, No. 3, 391–413 (1961).Google Scholar
  3. 3.
    F. John, “On quasiisometric mappings. I,” Commun. Pure Appl. Math.,21, No. 1, 77–110 (1968).Google Scholar
  4. 4.
    F. John, “On quasiisometric mappings. II,” Commun. Pure Appl Math.,22, No. 2, 265–278 (1969).Google Scholar
  5. 5.
    A. P. Kopylov, “Boundary values of mappings which resemble isometries,” Sib. Mat. Zh.,25, No. 3, 120–131 (1984).Google Scholar
  6. 6.
    A. V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Amer. Math. Soc., Providence (1973).Google Scholar
  7. 7.
    E. P. Sen'kin, “Rigidity of convex hypersurfaces,” Ukr. Geometr. Sb.,12 131–152, Kharkov State Univ. (1972).Google Scholar
  8. 8.
    S. Saks, Theory of the Integral, Stechert, New York (1937).Google Scholar
  9. 9.
    F. Roger, “Sur la relation entre les propriétés tangentielles et metriques des ensembles cartesiens,” C. R. Acad. Sci. Paris,201, 871–873 (1935).Google Scholar
  10. 10.
    L. Schwartz, Analyse Mathematique. Cours II, Hermann, Paris (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. A. Aleksandrov

There are no affiliations available

Personalised recommendations