Siberian Mathematical Journal

, Volume 25, Issue 6, pp 903–917 | Cite as

Plancherel formula for pseudo-riemannian symmetric spaces of the universal covering group of SL(2, R)

  • V. F. Molchanov
Article

Keywords

Symmetric Space Universal Covering Covering Group Plancherel Formula Universal Covering Group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. Faraut, “Distributions spheriques sur les espaces hyperboliques,” J. Math. Pures Appl.,58, No. 4, 369–444 (1979).Google Scholar
  2. 2.
    V. F. Molchanov, “The restriction of a representation of the complementary series of a pseudoorthogonal group to a pseudoorthogonal group of lower dimension,” Dokl. Akad. Nauk SSSR,237, No. 4, 782–785 (1977).Google Scholar
  3. 3.
    V. F. Molchanov, “The Plancherel formula for the tangent bundle of a projective space,” Dokl. Akad. Nauk SSSR,260, No. 5, 1067–1070 (1981).Google Scholar
  4. 4.
    L. Pukanszky, “The Plancherel formula for the universal covering group of SL (R, 2),” Math. Ann.,156, No. 2, 96–143 (1964).Google Scholar
  5. 5.
    W. Ruhl and B. C. Yunn, “Representations of the universal covering group of SU(1, 1) and their bilinear and trilinear invariant forms,” J. Math. Phys.,17, No. 8, 1521–1530 (1976).Google Scholar
  6. 6.
    V. F. Molchanov, “The decomposition of the tensor square of a representation of the complementary series of the unimodular group of real matrices of order two,” Sib. Mat. Zh.,18, No. 1, 174–188 (1977).Google Scholar
  7. 7.
    T. Oshima and T. Matsuki, “Orbits on affine symmetric spaces under the action of the isotropy subgroups,” J. Math. Soc. Jpn.,32, No. 2, 399–414 (1980).Google Scholar
  8. 8.
    A. Tengstrand, “Distributions invariant under an orthogonal group of arbitrary signature,” Math. Scand.,8, 201–218 (1960).Google Scholar
  9. 9.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press (1966).Google Scholar
  10. 10.
    I. M. Gel'fand and G. E. Shilov, Generalized Functions. Vol. 1: Properties and Operations, Academic Press, New York (1964).Google Scholar
  11. 11.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions Vol. II, McGraw-Hill, New York (1953).Google Scholar
  12. 12.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York (1953).Google Scholar
  13. 13.
    N. Dunford and J. T. Schwartz, Linear Operators, Part II: Spectral Theory, Interscience, New York (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. F. Molchanov

There are no affiliations available

Personalised recommendations