Advertisement

Siberian Mathematical Journal

, Volume 26, Issue 2, pp 180–185 | Cite as

A remark on the speed of convergence in the central limit theorem in Banach spaces

  • I. S. Borisov
Article

Keywords

Banach Space Limit Theorem Central Limit Central Limit Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    F. Götze, “Asymptotic expansions for bivariate von Mises functional,” Z. Wahrscheinlich-keitstheorie Verw. Geb.,50, No. 3, 333–355 (1979).Google Scholar
  2. 2.
    F. Götze, “On the rate of convergence in the central limit theorem in Banach spaces,” Preprints in Statistics, University of Cologne, No. 68, June (1981).Google Scholar
  3. 3.
    V. V. Yurinskii, “On the exactness of the normal approximation to the probability of being in a sphere,” Teor. Veroyatn. Primen.,27, No. 2, 270–278 (1982).Google Scholar
  4. 4.
    B. A. Zalesski, “An estimate of the exactness of the normal approximation in Hilbert space,” Teor. Veroyatn. Primen.,27, No. 2, 278–285 (1982).Google Scholar
  5. 5.
    V. I. Paulauskas, “On the rate of convergence in the central limit theorem in certain Banach spaces,” Teor. Veroyatn. Primen.,21, No. 4, 775–791 (1976).Google Scholar
  6. 6.
    V. Yu. Bentkus and A. Rachkauskas, “Estimates for the rate of convergence of sums of independent random variables in Banach space. I,” Litov. Mat. Zh.,22, No. 3, 12–38 (1982).Google Scholar
  7. 7.
    V. Yu. Bentkus and A. Rachkauskas, “Estimates for the rate of convergence of sums of independent random variables in Banach space. II,” Litov. Mat. Zh.,22, No. 4, 8–20 (1982).Google Scholar
  8. 8.
    W. Rhee and M. Talagrand, “Bad rates of convergence for the central limit theorem in Hilbert space,” Preprint, Columbus-Paris (1983).Google Scholar
  9. 9.
    R. M. Dudley, “Central limit theorems for empirical measures,” Ann. Probab.,6, No. 6, 899–929 (1978).Google Scholar
  10. 10.
    I. S. Borisov, “On the problem of the exactness of approximation in the central limit theorem for empirical measures,” Sib. Mat. Zh.,24, No. 6, 14–25 (1983).Google Scholar
  11. 11.
    I. S. Borisov, “On the rate of convergence in the central limit theorem for empirical measures,” Tr. Inst. Mat. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, Vol. 3, Nauka (1984), pp. 125–143.Google Scholar
  12. 12.
    J. Komlos, P. Major, and G. Tusnady, “An approximation of partial sums of independent RVs and sample DF. I,” Z. Wahrscheinlichkeitstheorie Verw. Geb.,32, Nos. 1/2, 111–113 (1975).Google Scholar
  13. 13.
    I. S. Borisov, “On the rate of convergence in the “conditional” principle of invariance,” Teor. Veroyatn. Primen.,23, No. 1, 77–89 (1978).Google Scholar
  14. 14.
    V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • I. S. Borisov

There are no affiliations available

Personalised recommendations