Siberian Mathematical Journal

, Volume 24, Issue 2, pp 287–298 | Cite as

Embeddings of the classes H p w in Lorentz spaces

  • N. Temirgaliev
Article

Keywords

Lorentz Space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. M. Stein and G. Weiss, Introduction to Fourier Analysis of Euclidean Spaces, Princeton Univ. Press (1971).Google Scholar
  2. 2.
    G. G. Lorentz, “Some new functional spaces” Ann. Math.,51, No. 1, 37–55 (1950).Google Scholar
  3. 3.
    P. L. Ul'yanov, “The embedding of certain classes of functions Hwp,” Izv. Akad. Nauk SSSR, Ser. Mat.,32, No. 3, 649–686 (1968).Google Scholar
  4. 4.
    V. A. Andrienko, “Embedding therems for functions of one variable,” in: Results in Science and Mathematical Analysis [in Russian], VINITI Akad. Nauk SSSR, Moscow (1971). pp. 203–262.Google Scholar
  5. 5.
    V. I. Kolyada, “Embedding in the classes Φ(L),” Izv. Akad. Nauk SSSR, Ser. Mat.,39, No. 2, 418–437 (1975).Google Scholar
  6. 6.
    M. F. timan and A. I. Rubinshtein, “Embeddings of classes of functions defined on zerodimensional groups,” Izv. Vyssh. Uchebn. Zaved., No. 8, 66–76 (1980).Google Scholar
  7. 7.
    H. Johansson, “Embedding of Hwp in some Lorentz spaces,” Der. Math. Univ. Umea. (Rubl.), No. 26, 26 (1975).Google Scholar
  8. 8.
    N. Temirgaliev, “Embedding in certain Lorentz spaces,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 83–85 (1980).Google Scholar
  9. 9.
    P. Osval'd, “Continuity moduli of uniformly measurable functions in the classes Φ(L),” Mat. Zametki,17, No. 2, 231–244 (1975).Google Scholar
  10. 10.
    A. V. Efimov, “Linear methods for approximating continuous periodic functions,” Mat. Sb.,54, No. 1, 51–90 (1961).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • N. Temirgaliev

There are no affiliations available

Personalised recommendations