Neurochemical Research

, Volume 19, Issue 8, pp 967–974 | Cite as

Metabolic turnover of myelin glycerophospholipids

  • Pierre Morell
  • Andrea H. Ousley


The apparent half life for metabolic turnover of glycerophospholipids in the myelin sheath, as determined by measuring the rate of loss of label in a myelin glycerophospholipid following radioactive precursor injection, varies with the radioactive precursor used, age of animal, and time after injection during which metabolic turnover is studied. Experimental strategies for resolving apparent inconsistencies consequent to these variables are discussed. Illustrative data concerning turnover of phosphatidylcholine (PC) in myelin of rat brain are presented. PC of the myelin membrane exhibits heterogeneity with respect to metabolic turnover rates. There are at least two metabolic pools of PC in myelin, one with a half life of the order of days, and another with a half life of the order of weeks. To a significant extent biphasic turnover is due to differential turnover of individual molecular species (which differ in acyl chain composition). The two predominant molecular species of myelin PC turnover at very different rates (16:0, 18:1 PC turning over several times more rapidly than 18:0, 18:1 PC). Therefore, within the same membrane, individual molecular species of a phospholipid class are metabolized at different rates. Possible mechanisms for differential turnover of molecular species are discussed, as are other factors that may contribute to a multiphasic turnover of glycerophospholipids.

Key Words

Myelin metabolism phospholipid metabolism phosphatidylcholine phosphatidylethanolamine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Latif, A. A., and Smith, J. P. 1970. In vivo incorporation of choline, glycerol and orthophosphate into lecithin and other phospholipids of subcellular fractions of rat cerebrum. Biochim. Biophys. Acta. 218:134–140.Google Scholar
  2. 2.
    Ansell, G. B. and Dohmen, H. 1957. The metabolism of individual phospholipids in the rat brain during hypoglycaemia, anaesthesia, and convulsions. J. Neurochem. 2:1–10.Google Scholar
  3. 3.
    August, C., Davison, A. N., and Maurice-Williams, F. 1961. Phospholipid metabolism in nervous tissue. Biochem. J. 81:8.Google Scholar
  4. 4.
    Benjamins, J. A., and McKhann, G. M. 1973. [2-3H]glycerol as a precursor of phospholipids in rat brain; evidence for lack of recycling. J. Neurochem. 20:1111–1120.Google Scholar
  5. 5.
    Benjamins, J. A., Miller, K., and McKhann, G. M. 1973. Myelin subfractions in developing rat brain, characterization and sulfatide metabolism. J. Neurochem. 20:1589–1603.Google Scholar
  6. 6.
    Benjamins, J. A., Miller, S. L., and Morell, P. 1976. Metabolic relationships between myelin subfractions, entry of galactolipids and phospholipids. J. Neurochem. 27:565–570.Google Scholar
  7. 7.
    Benjamins, J. A., and Iwata, R. 1979. Kinetics of entry of galactolipids and phospholipids into myelin. J. Neurochem. 32:921–926.Google Scholar
  8. 8.
    Benjamins, J. A., and Smith, M. E. 1984. Metabolism of myelin. In Myelin (Morell, P., ed.) 2nd Ed., pp. 225–258, Plenum Press, New York.Google Scholar
  9. 9.
    Braun, P. E. 1992. Molecular organization of myelin. In Myelin (Morell, P., ed.), Plenum Press, New York, pp. 97–116.Google Scholar
  10. 10.
    Cohen, B. G. and Phillips, A. H. 1980. Evidence for the rapid and concerted turnover of membrane phospholipids in MOPC 41 myeloma cells and its possible relationship to secretion. J. Biol. Chem. 255:3075–3079.Google Scholar
  11. 11.
    Cuzner, M. L., Davison, A. N., and Gregson, N. A. 1965. Chemical and metabolic studies of rat myelin of the central nervous system. Ann. N.Y. Acad. Sci. 122:86.Google Scholar
  12. 12.
    Davison, R. M. C. 1970. The biochemistry of the myelin sheath. In Myelination. (A. N. Davison and A. Peters, eds.) pp. 80–161, Charles C. Thomas, Springfield, Illinois.Google Scholar
  13. 13.
    Davison, A. N., and Dobbing, J. 1959. Phospholipid metabolism in nervous tissue, 1. A reconsideration of brain and peripheral nerve phospholipid metabolism in vivo. Biochem. J. 73:701–706.Google Scholar
  14. 14.
    Davison, A. N., and Dobbing, J. 1960. Phospholipid metabolism in nervous tissue, 2. Metabolic stability. Biochem. J. 75:565–570.Google Scholar
  15. 15.
    Davison, A. N., and Dobbing, J. 1960. Phospholipid metabolism in nervous tissue, 3. The anatomical distribution of metabolically inert phospholipid in the central nervous system. Biochem J. 75:571–574.Google Scholar
  16. 16.
    Dawson, R. M. C. 1966. The metabolism of animal phospholipids and their turnover in cell membranes. In Essays in Biochemistry (P. N. Campbell and G. D. Greville, eds.) Vol. 2, pp. 69–115, Academic Press, London.Google Scholar
  17. 17.
    Dawson, R. M. C., and Richter, D. 1950. Phosphorous metabolism in brain. Proc. Roy. Soc. B. 137:252–267.Google Scholar
  18. 18.
    Deshmukh, D. S., Kuizon, S., Bear, W. D., and Brockerhoff, H. Rapid incorporation in vivo of intracerebrally injected32Pi into polyphosphoinositides of three subfractions of rat brain myelin. J. Neurochem. 36:594–601, 1981.Google Scholar
  19. 19.
    Eichberg, J. and Dawson, R. M. C. Polyphosphoinositides in myelin. Biochem. J. 96:644–650, 1965.Google Scholar
  20. 20.
    Freysz, L., Lastennet, A., and Mandel, P. 1976. Metabolism of brain sphingomyelin. Half-lives of sphingosine, fatty acids and phosphate from two types of rat brain sphingomyelin. J. Neurochem. 27:355–359.Google Scholar
  21. 21.
    Fujimoto, K., Roots, B. I., Burton, R. M., and Harish, C. A. 1976. Morphological and biochemical characterization of light and heavy myelin isolated from developing rat brain. Biochim. Biophys. Acta. 426:659–668.Google Scholar
  22. 22.
    Funkhouser, J. D. and Read, R. J. 1985. Phospholipid transfer proteins from lung, properties and possible physiological functions. Chem. Phys. Lipids 38:17–27.Google Scholar
  23. 23.
    Gould, R. M. and Dawson, R. M. C. 1976. Incorporation of newly formed lecithin into peripheral nerve myelin. J. Cell. Biol. 68:480–496.Google Scholar
  24. 24.
    Holub, B. J. and Kuksis, A. 1978. Metabolism of molecular species of diacylglycerophospholipids. Adv. Lipid Res. 16:1–125.Google Scholar
  25. 25.
    Horrocks, L. A., Toews, A. D., Thompson, D. K., and Chin, J. Y. 1976. Synthesis and turnover of brain phosphoglycerides, results, methods of calculation, and interpretation. In Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems (G. Porcellati, L. Amaducci, and C. Galli, eds.) pp. 37–54, Plenum Press, New York.Google Scholar
  26. 26.
    Jungalwala, F. B. and Dawson, R. M. C. 1971. The turnover of myelin phospholipids in the adult and developing rat brain. Biochem. J. 123:683–693.Google Scholar
  27. 27.
    Kahn, D. W., and Morell, P. 1988. Phosphatidic acid and phosphoinositide turnover in myelin and its stimulation by acetylcholine. J. Neurochem. 50:1542–1550.Google Scholar
  28. 28.
    Kasurinen, J., van Paridon, P. A., Wirtz, K. W. A., and Somerharju, P. 1990. Affinity of phosphatidylcholine molecular species for the bovine phosphatidylcholine and phosphatidylinositol transfer proteins, properties of thesn-1 andsn-2 binding sites. Biochemistry 29:8548–8554.Google Scholar
  29. 29.
    Kirschner, D. A., Ganser, A. L., and Caspar, D. L. D. 1984. Diffraction studies of molecular organization and membrane interactions in myelin. In Myelin (P. Morell, ed.) pp. 51–95, Plenum Press, New York.Google Scholar
  30. 30.
    Ledeen, R. W. 1992. Enzymes and receptors of myelin. In, Myelin, Biology and Chemistry. (R. E. Martenson, ed., pp. 531–570, CRC Press, Boca Raton.Google Scholar
  31. 31.
    Matthieu, J., Quarles, R. H., Brady, R. O., and Webster, H. de F. 1973. Variation of proteins, enzyme markers and gangliosides in myelin subfractions. Biochim. Biophys. Acta. 329:305–317.Google Scholar
  32. 32.
    McMurray, W. C., and McGee, W. L. 1972. Phospholipid metabolism. Annu. Rev. Biochem. 41:129–160.Google Scholar
  33. 33.
    Miller, S. L., Benjamins, J. A., and Morell, P. 1977. Metabolism of glycerophospholipids of myelin and microsomes in rat brain, reutilization of precursors. J. Biol. Chem. 252:4025–4037.Google Scholar
  34. 34.
    Miller, S. L., and Morell, P. 1978. Turnnover of phosphatidylcholine in microsomes and myelin in brains of young and adult rats. J. Neurochem. 31:771–777.Google Scholar
  35. 35.
    Norton, W. T. and Cammer, W. 1984. Isolation and characterization of myelin. In Myelin (P. Morell, ed.) pp. 147–195, Plenum Press, New York.Google Scholar
  36. 36.
    Norton, W. T. and Poduslo, S. E. 1973. Myelination in rat brain, method of myelin isolation. J. Neurochem. 21:749–757.Google Scholar
  37. 37.
    Omura, T., Siekevitz, P., and Palade, G. E. 1967. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J. Biol. Chem. 242:2389–2396.Google Scholar
  38. 38.
    Ousley, A. H. and Morell, P., 1992. Individual molecular species of phosphatidylcholine and phosphatidylethanolamine in myelin turn over at different rates. J. Biol. Chem. 267:10362–10369.Google Scholar
  39. 39.
    Pasquini, J. M., Krawiec, L., and Soto, E. F. 1973. Turnover of phosphatidylcholine in cell membranes of adult rat brains. J. Neurochem. 21:647–653.Google Scholar
  40. 40.
    Pasternak, C. A. and Bergeron, J. J. M. 1970. Turnover of mammalian phospholipids, stable and unstable components in neoplastic mast cells. Biochem. J. 119:473–480.Google Scholar
  41. 41.
    Ranvier, M. L. 1878. Leçons suv L'Histologie du Système Nerveux, Librairie F. Savy, Paris.Google Scholar
  42. 42.
    Samborski, R. W., Ridgway, N. D., and Vance, D. E. 1990. Evidence that only newly made phosphatidylethanolamine is methylated to phosphatidylcholine and that phosphatidylethanolamine is not significantly deacylated-reacylated in rat hepatocytes. J. Biol. Chem. 265:18322–18329.Google Scholar
  43. 43.
    Scott, D. L., White, S. P., Otwinowski, Z., Yuan, W., Gelb, M. H., and Sigler, P. B. 1990. Interfacial catalysis, the mechanism of phospholipase A2. Science 250:1541–1546.Google Scholar
  44. 44.
    Smith, M. E. and Eng, L. 1965. The turnover of the lipid components of myelin. J. Am. Oil. Chem. Soc. 42:1013–1018.Google Scholar
  45. 45.
    Sun, G. Y. and Horrocks, L. A. 1973. Metabolism of palmitic acid in the subcellular fractions of mouse brain. J. Lipid Res. 14:206–214.Google Scholar
  46. 46.
    Verger, R., Miers, M. C. E., and de Haas, G. H. 1973. Action of phospholipase A at interfaces. J. Biol. Chem. 248:4023–4034Google Scholar
  47. 47.
    White, S. P., Scott, D. L., Otwinowski, Z., Gelb, M. H., and Sigler, P. B. 1990. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science 250:1560–1563.Google Scholar
  48. 48.
    Wirtz, K. W. A. 1982. Phospholipid transfer proteins. In Lipid-Protein Interactions (P. C. Jost and O. H. Griffith, eds.) pp. 151–231, Wiley-Interscience, New York.Google Scholar
  49. 49.
    Zimmerman, A. M., Quarles, R. H., Webster, H. de F., Matthieu, J., and Brady, R. O. 1975. Characterization and protein analysis of myelin subfractions in rat brain, developmental and regional comparisons. J. Neurochem. 25:749–757.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Pierre Morell
    • 1
  • Andrea H. Ousley
    • 2
  1. 1.Dept. of Biochemistry and Biophysics and Brain and Development Research CenterUniversity of North CarolinaChapel Hill
  2. 2.Dept. of PhysiologyUniversity of North CarolinaChapel Hill

Personalised recommendations