Siberian Mathematical Journal

, Volume 25, Issue 5, pp 735–743 | Cite as

Trace formula for nontrace-class perturbations

  • L. S. Koplienko
Article

Keywords

Trace Formula 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. G. Krein, “On a trace formula in perturbation theory,” Mat. Sb.,33, No. 3, 597–626 (1958).Google Scholar
  2. 2.
    M. G. Krein, “On certain new studies in the perturbation theory for self-adjoint operators,” in: M. G. Krein, Topics in Differential and Integral Equations and Operator Theory, I. Gohberg (ed.), Operator Theory: Advances and Appl., Vol. 7, Birkhäuser Verlag, Basel (1983), pp. 107–172.Google Scholar
  3. 3.
    M. G. Krein, “On perturbation determinants and the trace formula,” Dokl. Akad. Nauk SSSR,144, No. 2, 268–273 (1962).Google Scholar
  4. 4.
    M. Sh. Birman and M. Z. Solomyak, “Remarks on the spectral shift function,” J. Sov. Math.,3, No. 4 (1975).Google Scholar
  5. 5.
    I. M. Lifshits, “On a certain problem in perturbation theory,” Usp. Mat. Nauk,7, No. 1, 171–180 (1952).Google Scholar
  6. 6.
    M. Sh. Birman and M. G. Krein, “A contribution to the theory of wave operators and scattering operators,” Dokl. Akad. Nauk SSSR,144, No. 3, 475–480 (1962).Google Scholar
  7. 7.
    L. S. Koplienko, “Local criteria for the existence of the spectral shift function,” Zap. Nauchn. Sem. LOMI Akad. Nauk SSSR,73, 102–117 (1977).Google Scholar
  8. 8.
    I. C. Gohberg, Introduction to the Theory of Linear Nonselfadjoint Operators, Am. Math. Soc. (1969).Google Scholar
  9. 9.
    Yu. L. Daletskii and S. G. Krein, “Integration and differentiation of functions of Hermitian operators,” Tr. Sem. po Funktsion. Anal.,1, 81–105, Voronezh, Kharkov State Univ. (1956).Google Scholar
  10. 10.
    M. Sh. Birman and M. Z. Solomyak, “Double Stieltjes operator integrals,” in: Problems of Mathematical Physics [in Russian], Vol. 1, Leningrad State Univ. (1966), pp. 33–67.Google Scholar
  11. 11.
    M. Sh. Birman and M. Z. Solomyak, “Double Stieltjes operator integrals, III” in: Problems of Mathematical Physics [in Russian], Vol. 6, Leningrad State Univ. (1973), pp. 27–52.Google Scholar
  12. 12.
    V. V. Sten'kin, “On multiple operator integrals,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 102–115 (1977).Google Scholar
  13. 13.
    A. O. Gel'fond, Calculus of Finite Differences [in Russian], Nauka, Moscow (1967).Google Scholar
  14. 14.
    B. S. Pavlov, “On multidimensional operator integrals,” in: Problems of Mathematical Analysis [in Russian], Vol. 2, Leningrad State Univ. (1969), pp. 99–121.Google Scholar
  15. 15.
    M. Sh. Birman, L. S. Koplienko, and M. Z. Solomyak, “Estimation of the spectrum of the difference of fractional powers of self-adjoint operators,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 3, 3–11 (1975).Google Scholar
  16. 16.
    V. A. Yavryan, “On certain perturbations of self-adjoint operators,” Dokl. Akad. Nauk Arm. SSR,38, No. 1, 3–7 (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • L. S. Koplienko

There are no affiliations available

Personalised recommendations