Advertisement

Siberian Mathematical Journal

, Volume 23, Issue 4, pp 530–544 | Cite as

Abstract criteria for absolute stability of nonlinear systems relative to a linear output, applications. I

  • A. L. Likhtarnikov
  • V. A. Yakubovich
Article
  • 49 Downloads

Keywords

Nonlinear System Absolute Stability Linear Output Abstract Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. A. Yakubovich, “On the abstract theory of absolute stability of nonlinear systems,” Vestn. Leningr. Inst., Ser. Mat., Mekh., Astron., No. 13, 99–118 (1977).Google Scholar
  2. 2.
    V. A. Yakubovich, “Methods in abstract stability theory,” in: Methods for Studying Nonlinear Automatic Control Systems [in Russian], Nauka, Moscow (1975), pp. 74–180.Google Scholar
  3. 3.
    V. M. Popov, “Criterii suficiente de stabilitatea asimptotica in mare pentru sistemele automate neliniare cu mai multe organe de execute,” Studii si Cercetari de Energetika, Acad. People's Republic of Romania, No. 3, 9 (1959).Google Scholar
  4. 4.
    V. M. Popov, Hyperstability of Automatic Systems [in Russian], Nauka, Moscow (1970).Google Scholar
  5. 5.
    V. A. Yakubovich, “Solution of some matrix inequalities occurring in automatic control theory,” Dokl. Akad. Nauk SSSR,143, No. 6, 1304–1307 (1962).Google Scholar
  6. 6.
    A. Kh. Gelig, G. A. Leonov, and V. A. Yakubovich, Stability of Nonlinear Systems with a Unique Equilibrium State [in Russian], Nauka, Moscow (1978).Google Scholar
  7. 7.
    V. A. Yakubovich, “Minimization of quadratic functionals satisfying quadratic constraints and the necessity of a frequency condition in quadratic criteria for absolute stability of nonlinear control systems,” Dokl. Akad. Nauk SSSR,180, No. 2, 289–294 (1968).Google Scholar
  8. 8.
    V. A. Yakubovich, “Special conditions for absolute stability of control systems with hysteresis nonlinearities,” Dokl. Akad. Nauk SSSR,190, No. 1, 34–37 (1970).Google Scholar
  9. 9.
    M. A. Krasnosel'skii, B. M. Darunskii, I. V. Ememen, P. P. Zavrenko, E. A. Livmii, and A. V. Pokrovskii, “Operator-Historant,” Dokl. Akad. Nauk SSSR,190, No. 1, 34–37 (1970).Google Scholar
  10. 10.
    K. Yosida, Functional Analysis, Springer-Verlag, New York.Google Scholar
  11. 11.
    V. I. Yudovich, “The linearization method in the stability problem for periodic motion of a viscous fluid,” in: Proc. Sixth Winter School on Mathematical Programming and Allied Fields [in Russian], Izd. TsEMI, Moscow (1975), pp. 44–104.Google Scholar
  12. 12.
    A. L. Likhtarnikov, “A criterion for absolute stability relative to an output of distributed-parameter automatic control systems,” VINITI Dep. No. 3763-76; Abstract in Vestn. Leningrad. Univ., Ser. Mat., Mekh., Astron., No. 1, 196 (1977).Google Scholar
  13. 13.
    V. A. Yakubovich, “Semiboundedness of quadratic functionals on a subspace,” Vestnik Leningrad. Univ. Ser. Mat., Mekh., Astron., No. 19, 50–53 (1982).Google Scholar
  14. 14.
    D. Z. Arov and V. A. Yakubovich, “Conditions for semiboundedness of quadratic functionals on Hardy spaces,” Vestn. Leningr. Univ. Ser. Mat., Mekh., Astron., No. 1, 7–13 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • A. L. Likhtarnikov
  • V. A. Yakubovich

There are no affiliations available

Personalised recommendations