Lithuanian Mathematical Journal

, Volume 23, Issue 1, pp 61–69 | Cite as

Estimating the second central moment for strongly additive arithmetic functions

  • J. Kubilius


Central Moment Arithmetic Function Additive Arithmetic Additive Arithmetic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. H. Hardy and S. Ramanujan, “Rather with class 1 number of prime factors of n,” Q. J. Math.,48, 76–92 (1917).Google Scholar
  2. 2.
    P. Tuŕan, “On a theorem of Hardy and Ramanujan,” J. London Math. Soc.9, 274–276 (1943).Google Scholar
  3. 3.
    P. Tuŕán, “Az eǵész sźamok primosz tóinak számáról,” Mat. Lapok41, 103–130 (1934).Google Scholar
  4. 4.
    P. Turán, “Über einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan,” J. London Math. Soc.11, 125–133 (1936).Google Scholar
  5. 5.
    I. Kubilyus, “Probabilistic methods in number theory,” Usp. Mat. Nauk.11, No. 2 (68), 31–66 (1956).Google Scholar
  6. 6.
    I. Kubilyus, Probabilistic Methods in Number Theory [in Russian], Gos. Izd. Polit. Nauchn. Lit. LitSSR, Vilnius (1959 1962).Google Scholar
  7. 7.
    P. D. T. A. Elliott, “The Turan-Kubilius inequality, and a limitation theorem for the large sieve,” Am. J. Math.,92, 293–300 (1970).Google Scholar
  8. 8.
    J. Kubilius, “On an inequality for additive arithmetic functions,” Acta Arithm.,27, 371–383 (1975).Google Scholar
  9. 9.
    I. Kubilyus, “Law of large numbers for additive functions,” Liet. Mat. Rinkinys,17, No. 3, 113–114 (1977).Google Scholar
  10. 10.
    P. D. T. A. Elliott, “The Turan-Kubilius inequality,” Proc. Am. Math. Soc.,65, 8–10 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • J. Kubilius

There are no affiliations available

Personalised recommendations