Skip to main content
Log in

Identification and characterization of high-affinity Ca2+-ATPase associated with axonal plasma membranes of dog mesenteric nerves

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The microsomal fraction isolated from dog mesenteric nerve fibres was found to contain ATPase activity stimulated by micromolar concentrations of Ca ions. Such a high-affinity Ca2+-ATPase (hereafter referred to as HA Ca-ATPase) followed a Michaelis-Menten kinetics with Km for Ca ions of 0.4 μM and Vmax=12.5±2.4 μmol Pi.mg−1h−1. The examination of the subcellular origin of HA Ca-ATPase revealed that this enzyme is associated with axonal plasma membranes as documented by its co-purification with several plasma membrane marker enzymes and with tetrodotoxin-sensitive3H-saxitoxin binding. The addition of exogenous magnesium ions (Mg) resulted in a non-competitive inhibition of HA Ca-ATPase with Ki=0.5 mM. The reaction velocity of HA Ca-ATPase was also inhibited by other divalent ions with the order of potency Mg>Mn >Zn≥Co>Ni. In contrast to low affinity (high Km) Mg- and Ca-ATPase, the HA Ca-ATPase was insensitive to the inhibition by sodium azide (10 mM) and sodium fluoride (10 mM). Similarly, the specific activity of HA Ca-ATPase was unaffected by vanadate (100 μM) and N-ethylmaleinimide (100 μM). It is concluded that axonal plasma membranes of dog mesenteric nerves contain HA Ca-ATPase which seems to be unrelated to calcium-transporting Mg-dependent, Ca-stimulated ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

HA Ca-ATPase:

high-affinity Ca2+-ATPase

K-pNPPase:

onabain-sensitive, K+-stimulated p-nitrophenyl phosphatase

NEM:

N-ethylmaleinimide

SIM:

250 mM sucrose, 10 mM imidazole-HCl pH 7.4

TRIS:

tris (hydroxymethyl) aminomethane

References

  1. Akera, T., and Brody, T. M. 1982. Myocardial membranes: regulation and function of the sodium pump. Annu. Rev. Physiol. 44:375–388.

    PubMed  Google Scholar 

  2. Amende, L. M., Chock, S. P., and Albers, R. W. 1983. Characterization of the Ca2+-and Mg2+-dependent ATPases in Electrophorus Electroplax microsomes. J. Neurochem. 40:1040–1047.

    PubMed  Google Scholar 

  3. Grover, A. K., Jones, T. R., and Daniel, E. E. 1980. Effect of vanadate on rat myometrium plasma membrane enzyme activities. Can. J. Physiol. Pharmacol. 58:1247–1250.

    PubMed  Google Scholar 

  4. Kwan, C. Y., and Ramlal, T. 1982. On the inhibition of smooth muscle membrane ATPase by sodium azide. Biochem. Int. 4:439–449.

    Google Scholar 

  5. Raess, B. V. and Vincenzi, F. F. 1980. Calmodulin activation of red blood cells (Ca2+-Mg2;+)-ATPase and its antagonism by phenothiazines. Mol. Pharmacol. 18:253–258.

    PubMed  Google Scholar 

  6. Niggli, V., Adunyah, E. S., Penniston, J. T. and Carafoli, E. 1981. Purified (Ca2++Mg2+)-ATPase of the erythrocyte membrane: reconstitution and effect of calmodulin and phospholipids. J. Biol. Chem. 256:395–401.

    PubMed  Google Scholar 

  7. James, P., Zvaritch, E. I., Shakhparonov, M. I., Penniston, J. T., and Carafoli, E. 1987. The amino acid sequence of the phosphorylation domain of the crythrocyte Ca2+ ATPase. Biochim. Biophys. Res. Commun. 149:7–12.

    Google Scholar 

  8. Michaelis, M. L., Kitos, T. E., Nunley, E. W., Lecluyse, E., and Michaelis, E. K. 1987. Characteristics of Mg2+-dependent, ATP-activated Ca2+ transport in synaptic and microsomal membranes and in permeabilized synaptosomes. J. Biol. Chem. 262:4182–4189.

    PubMed  Google Scholar 

  9. Kelley, L. K., and Smith, C. H. 1987. Use of GTP to distinquish calcium transporting ATPase activity from other calcium dependent nucleotide phophatases in human placental basal plasma membrane. Biochim. Biophys. Res. Commun. 148:126–132.

    Google Scholar 

  10. Itoh, K., Morimoto, S., Shiraishi, T., Taniguchi, K., Onishi, T., and Kumahara, Y. 1988. Increase of (Ca2++Mg2+)-ATPase activity of renal basolateral membranes by platelet-derived growth factor through a specific receptor. Biochim. Biophys. Res. Commun. 153:1315–1323.

    Google Scholar 

  11. Kwan, C. Y., Kostka, P., Ramlal, T., and Daniel, E. E. 1984. A novel plasmalemmal magnesium-independent, high-affinity calcium-adenosine triphosphatase in smooth muscles. IRCS Med. Sci. 12:37–38.

    Google Scholar 

  12. Kwan, C. Y., and Kostka, P. 1984. A Mg2+-independent high-affinity Ca2+-stimulated adenosine triphosphatase in the plasma membrane of rat stomach smooth muscle. Biochim. Biophys. Act 776:209–216.

    Google Scholar 

  13. Lotersztajn, S., and Pecker, F. 1982. A membrane-bound protein inhibitor of the high affinity Ca2+-ATPase in rat liver plasma membranes. J. Biol. Chem. 257:6638–6641.

    PubMed  Google Scholar 

  14. Grover, A. K., Kwan, C. Y., and Oakes, P. J. 1985. Calcium pump, high-affinity Ca2+-ATPase, and other ATPases in dog antrum smooth muscle plasma membrane. Am. J. Physiol. 248:C449-C456.

    PubMed  Google Scholar 

  15. Kwan, C. Y., Kostka, P., Gover, A. K., Law, J. S., and Daniel, E. E. 1986. Calmodulin stimulation of plasmalemmal Ca2+-pump of canine nortic smooth muscle. Blood Vessels 23:22–33.

    PubMed  Google Scholar 

  16. Lin, S. H. 1985. The rat liver membrane high affinity (Ca2+−Mg2+)-ATPase is not a calcium pump. Comparison with ATP-dependent transporter. J. Biol. Chem. 260:10976–10980.

    PubMed  Google Scholar 

  17. Minami, J., and Penniston, J. T. 1987. Ca2+-uptake by corpusluteum plasma membranes: evidence for the presence of both Ca2+-pumping ATPase and a Ca2+-dependent nucleoside triphosphatase. Biochem. J. 242:889–894.

    PubMed  Google Scholar 

  18. Birch-Machin, M. A., and Dawson, A. P. 1988. Ca2+ transport by rat liver plasma membranes: the transporter and the previously reported Ca2+-ATPase are different enzymes. Biochim. Biophys. Acta 944:308–314.

    PubMed  Google Scholar 

  19. Lin, S. C., and Way, E. L. 1982. Calcium-activated ATPase in presynaptic nerve endings. J. Neurochem. 39:1641–1651.

    PubMed  Google Scholar 

  20. Sorensen, R. G., and Mahler, H. R. 1981. Calcium-stimulated adenosine triphosphatases in synaptic membranes. J. Neurochem. 37:1407–1418.

    PubMed  Google Scholar 

  21. Condrescu, M., Osses, L., and DiPolo, R. 1984. Partial purification and characterization of the (Ca2++Mg2+)-ATPase from squid optic nerve plasma membrane. Biochim. Biophys. Acta 769:261–269.

    PubMed  Google Scholar 

  22. DiPolo, R., and Beauge, L. 1987. The squid axon as a model for studying plasma membrane mechanisms for calcium regulation. Hypertension 10 (Suppl. 1):I-15–I-19.

    Google Scholar 

  23. Stauderman, K. A., Jones, D. J., and Ross, D. H. 1985. Dibutyril-cyclic GMP stimulation of Ca2+-ATPase activity in rat brain synaptic membranes. J. Neurochem. 45:970–972.

    PubMed  Google Scholar 

  24. Gandhi, C. R., and Ross, D. H. 1988. Characterization of a high-affinity Mg2+-independent Ca2+-ATPase from rat brain synaptosomal membranes. J. Neurochem. 50:248–256.

    PubMed  Google Scholar 

  25. Kwan, C. Y., Triggle, C. R., Grover, A. K., Lee, R. M. K. W. and Daniel, E. E. 1983. An analytical approach to the preparation and characterization of subcellular membranes from canine mesenteric arteries. Prep. Biochem. 13:275–315.

    PubMed  Google Scholar 

  26. Taussky, H. H., and Shorr, E. 1953. A microcolorimetric method for the determination of inorganic phosphorus. J. Biol. Chem. 202:675–685.

    PubMed  Google Scholar 

  27. Kostka, P., Ahmad, S., Berezin, I., Kwan, C. Y., Allescher, H.-D., and Daniel, E. E. 1987. Subcellular fractionation of the longitudinal smooth muscle/myenteric plexus of dog ileum: dissociation of two plasma membrane marker enzymes. J. Neurochem. 49:1124–1132.

    PubMed  Google Scholar 

  28. Kostka, P., and Kwan, C. Y. 1986. Properties of potassium activated p-nitrophenyl phosphatase in plasma membranes isolated from rat stomach muscle. J. Bioenerg. Biomembr. 18:295–306.

    PubMed  Google Scholar 

  29. Matlib, M. A., Crankshaw, D. J., Garfield, R. E., Kwan, C. Y., Branda, L. A., and Daniel, E. E. 1979. Characterization of membrane fractions and isolation of purified plasma membranes from rat myometrium. J. Biol. Chem. 254:1834–1839.

    PubMed  Google Scholar 

  30. Ahmad, S., Allescher, H.-D., Manaka, H., Manaka, Y., and Daniel, E. E. 1988. [3H]Saxitoxin as a marker for canine deep muscular plexus neurons. Am. J. Physiol. 255:G462-G469.

    PubMed  Google Scholar 

  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  32. Whittaker, V. P. 1984. The synaptosome. Pages 1–39,in Lajtha, A. (ed.), Handbook of Neurochemistry Vol. 2, Plenum Press, New York-London.

    Google Scholar 

  33. Shi, A. G., Ahmad, S., Kwan, C. Y. and Daniel, E. E. 1990. α-Adrenoceptors in dog mesenteric vessels — Subcellular distribution and number of [3H]Prazosin and [3H]Rauwolscine binding sites. J. Cardiovasc. Pharmacol. 15: (in press).

  34. Lin, S. H., and Russell, W. E. 1988. The Ca2+-dependent ATPases in rat liver plasma membranes. The previously purified (Ca2+−Mg2+)-ATPase is not a Ca2+ pump but an ecto-ATPase. J. Biol. Chem. 263:12253–12258.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostka, P., Barnett, W.H. & Kwan, CY. Identification and characterization of high-affinity Ca2+-ATPase associated with axonal plasma membranes of dog mesenteric nerves. Neurochem Res 15, 833–841 (1990). https://doi.org/10.1007/BF00968562

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968562

Key Words

Navigation