Skip to main content
Log in

Effect of short-and long-term exposure to low environmental temperature on brain regional GABA metabolism

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Single exposure of adult male rats to low environmental temperature (LET, 12 ± 0.5°C) for 2 h significantly increased the hypothalamic and striatal GABA levels without affecting those in other regions of brain. The activity of glutamate decarboxylase (GAD) was elevated in hypothalamus (H) and corpus striatum (CS) under these conditions. GABA accumulation rate (measured with ethanolamine-O-sulfate, an inhibitor of GABA-transaminase) was also increased in both H and CS of rats exposed to LET for 2 h. Unlike after a single exposure, the repeated exposure (2 h/day) for 7, 15, and 30 onsecutive days did not change the hypothalamic GABA metabolism. No change in GABA metabolism was observed in CS when rats were repeatedly exposed to LET for 7 consecutive days. Prolongation of repeated exposure to LET (2 h/day) for 15 and 30 consecutive days decreased the striatal GABA level and increased the activity of GABA-transaminase, although GAD activity was not altered under these conditions. These results suggest that single exposure to LET accelerates GABA synthesis and may reduce the GABAergic activity in both H and CS; whereas repeated exposure to LET for 15 or 30 consecutive days enhances GABAergic activity with the stimulation of GABA utilization only in CS without affecting its synthesizing process. Thus, it may be suggested that the hypothalamic and striatal GABA system may play a characteristic role in response to short-and long-term exposure to LET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lomax, P., and Green, M. D. 1975. Neurotransmitters and temperature regulation. Prog. Brain Res. 12:251–261.

    Google Scholar 

  2. Siesjo, B. K. 1978. Hypothermia and hyperthermia. Pages 324–344,in Siesjo, B. K. (ed.), Brain Energy Metabolism, John Wiley and Sons, Chichester, New York, Brisbane, Toronto.

    Google Scholar 

  3. Leppaluoto, J., Korhonen, I., Huttunen, P., and Hassi, J. 1988. Serum levels of thyroid hormone and adrenal hormones testosterone, TSH, LH, GH and prolactin in men after a 2 h stay in a cold room. Acta Physiol. Scand. 132:543–548.

    PubMed  Google Scholar 

  4. Von Euler, C. 1964. The physiology and pharmacology of temperature regulation. Pharmacol. Rev. 13:361–398.

    Google Scholar 

  5. Rivier, C., and Vale, W. 1987. Diminished responsiveness of the hypothalamic-pituitary aderenal axis of the rat during exposure to prolonged stress: A pituitary mediated mechanism. Endocrinology 121:1320–1328.

    PubMed  Google Scholar 

  6. Yahata, T., Murazumi, K. and Kuroshima, A. 1987. Stress and cold induced adrenocortical responses in repetitively immobilized or cold-acclimated rats. Can. J. Physiol. Pharmacol. 65:1448–1460.

    PubMed  Google Scholar 

  7. Golden, F. St. C., and Tipton, M. J. 1988. Human adptation to repeated cold immersions. J. Physiol. 396:349–364.

    PubMed  Google Scholar 

  8. Soriano, F. J. L., and Alemany, M. 1988. Influence of cold exposure on liver amino acid metabolism enzymes of the rat. Biochem. Int. 16:1075–1082.

    PubMed  Google Scholar 

  9. Corrodi H., Fuxe, K. and Hokfelt, T. 1968. Central serotonin neurons and thermoregulation. Adv in Pharmacol. 6B:49–54.

    Google Scholar 

  10. Cox B. and Lomax, P. 1977. Pharmacologic control of temperature regulation. Ann. Rev. Pharmacol. Toxicol. 17:341–353.

    Google Scholar 

  11. Baldino, F. Jr. 1986. Norepinephrine suppression of neuronal thermosensitivity. Pages 99–102,in Cooper, K., Lomax, P., Schonbaum, E., and Veale, W. L. (eds.), Homeostasis and Thermal Stress, Karger, Basel.

    Google Scholar 

  12. Poddar, M. K., Mukhopadhyay, S., and Ray, S. K. 1986. Environmental temperature-induced regional changes in brain dopaminergic activity. Pages 133–136,in Cooper, K., Lomax, P., Schonbaum, E. and Veale, W. L. (eds.), Homeostasis and Thermal Stress, Karger, Basel.

    Google Scholar 

  13. Mukhopadhyay, S., and Poddar, M. K. 1988. Environmental temperature induced change in brain regional serotonergic activity. Biogenic Amines 5:505–516.

    Google Scholar 

  14. Poddar, M. K. and Mukhopadhyay, S. 1989. Synaptosomal membrane-bound (Na+−K+)-ATPase: Effect of higher environmental temperature. J. Neurochem. 52(suppl):170.

    Google Scholar 

  15. Gordan, R., Spector, S., Sjaerdsma, A., and Udenfried, S. 1966. Increased synthesis of norepinephrine and epinephrine in the intact rat during exercise and exposure to cold. J. Pharm. Exp. Therp. 153:440–447.

    Google Scholar 

  16. Bliss, E. J., Ailion, J., and Zwanzider, J. 1968. Metabolism of norepinephrine, serotonin and depamine in rat brain with stress. J. Pharmacol. Exp. Therap. 164:122–134.

    Google Scholar 

  17. Tomitaro, K., Hata, T., Higashiguchi, T., Itoh, E., and Kawabuta, A. 1986. Changes of total acetylcholine content and the activity of related enzymes in specific alteration of rhythm in environmental temperature (repeated cold)-stressed rat brain and duodenum. Jap. J. Pharmacol. 40:174–177.

    PubMed  Google Scholar 

  18. Hata, T., Kita, T., Kamanaka, Y., Honda, S., Kakchi, K., Kawabata, A., and Itoh, E. 1987. Catecholamine levels in the brain of SART (repeated cold)-stressed rats. J. Autonomic Pharmacol 7:257–266.

    Google Scholar 

  19. Kuriyama, K., Haber, B., Sisken, B., and Roberts, E. 1966. The γ-aminobutyric acid system in rabbit cerebellum. Proc. Natl. Acad. Sci. USA. 55:846–852.

    PubMed  Google Scholar 

  20. Roberts, E. 1974. γ-aminobutyric acid and nervous system function —A perspective. Biochem. Pharmacol. 23:2637–2649.

    PubMed  Google Scholar 

  21. McGeer, P. L., Eccles, J. C., and McGeer, E. G. 1978. Inhibitory amino acid neurons: GABA and glycine. Pages 199–231,in McGeer, P. L., Eccles, J. C., and McGeer, E. G. (eds.), Molecular Neurobiology of the Mammalian Brain, Plenum Press, New York.

    Google Scholar 

  22. Joffe, R. T., Pot, R. M., Rubinow, D. R., Berrettini, W. H., Hare, T. A., Ballenger, J. C., and Ray-Byrne, P. P. 1986. Cerebrospinal fluid GABA in manic-depressive illness. Pages 187–194,in Bartholini, G., Lloyd, K. G. and Morselli, P. L. (eds.), GABA and mood Disorders, Raven Press, New York.

    Google Scholar 

  23. Yoneda, Y., Kanmori, K., Ida, S., and Kuriyama, K. 1983. Stress-induced alterations in metabolism of GABA in rat brain. J. Neurochem. 40:350–356.

    PubMed  Google Scholar 

  24. Schwartz, R. D., Wess, M. J., Labarea, R., Skolnick, P., and Paul, S. M. 1987. Acute stress enhances the activity of the GABA receptor gated chloride ion channel in brain. Brain Res 411:151–155.

    PubMed  Google Scholar 

  25. Biswas, S., and Poddar, M. K. 1988. Involvement of GABA in environmental temperature-induced change in body temperature. Meth. Find. Exp. Clin. Pharmacol. 10:747–749.

    Google Scholar 

  26. Biswas, S., and Poddar, M. K. 1989. Effect of higher environmental tempeerature on diazepam-induced changes in brain regional GABA. Biogenic Amines 6:581–590.

    Google Scholar 

  27. Otero Losada, M. E. 1988. Changes in central GABAergic function following acute and repeated stress. Brit. J. Pharmacol. 93:483–490.

    Google Scholar 

  28. Poddar, M. K., and Dewey, W. L. 1980. Effects of cannabinoids on catecholamine uptake and release in hypothalamus and striatal synaptosomes. J. Pharm. Exp. Therap. 214:63–67.

    Google Scholar 

  29. Lowe, I. P., Robins, E., and Eyerman, G. S. 1958. The fluorimetric measurement of glutamic decarboxylase and its distribution in brain. J. Neurochem. 3:8–18.

    PubMed  Google Scholar 

  30. MacDonnell, P., and Greengard, O. 1975. The distribution of glutamate decarboxylase in rat tissues: isotopic vs. fluorometric assays. J. Neurochem. 24:615–618.

    PubMed  Google Scholar 

  31. Sytinsky, I. A., Guzikov, B. M., Gomanko, M. V., Eremin, V. P., and Konovalona, N. N. 1975. The gamma aminobutyric acid (GABA) system in brain during acute and chronic ethanol intoxication. J. Neurochem. 25:43–48.

    PubMed  Google Scholar 

  32. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall R. J. 1951. Protein measurement with Folin-phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  33. Leach, M. J. and Walker, J. M. G. 1977. Effect of EOS on regional GABA metabolism in mouse brain. Biochem. Pharmacol. 26:1569–1572.

    PubMed  Google Scholar 

  34. Thierry, A., Javoy, F., Glowinski, J., and Kety, S. 1968. Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rats J. Pharmacol. Exp. Ther. 163:163–171.

    PubMed  Google Scholar 

  35. Floran, B., Arias, A., Sierra, A., Martinez-Fong, D., and Acenes, J. 1988. Dopamine modulates GABA release inthe pars reticulata of the rat substantia nigra. Soc. Neurosci. 14:348.

    Google Scholar 

  36. Kuriyama, K., Kanmori, K., Taguchi, J. and Yoneda, Y. 1984. Stress-induced enhancement of suppression of [3H]-GABA release from striatal slices by presynaptic autoreceptor. J. Neurochem. 42:943–950.

    PubMed  Google Scholar 

  37. Pittaluga, A., Asaro, D., Pellegrin, G., and Raiteri, M. 1987. Studies on tritiated GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors of the GABA type. Eur. J. Pharmacol. 144:45–52.

    PubMed  Google Scholar 

  38. Scheel-Kruger, J., and Magelund, G. 1981. GABA in the entopeduncular nucleus and the subthalamic nucleus participates in mediating dopaminergic striatal output functions. Life Sci. 29:1555–1562.

    PubMed  Google Scholar 

  39. Scheel-Kruger, J. 1982. GABA: an essential moderator and mediator in the basal ganglia system of dopamine related functions. Acta Neurol. Scand. 65 (Suppl. 90), 40–45.

    Google Scholar 

  40. Appelgren, G., Eriksson, S., and Sjcstrand, N. O. 1982. Commentary on the reduced urinary noradrenaline excretion following cold stress and exercise in physically treated rats. Acta Physiol. Scand. 114:579–585.

    PubMed  Google Scholar 

  41. Dallman, M. F. and Jones, M. T. 1973. Corticosteroid feedback control of ACTH secretion: effect of stress-induced corticosterone secretion on subsequent stress response in the rat. Endocrinology 92:1367–1369.

    PubMed  Google Scholar 

  42. Young, E. A., and Akil, H. 1985. Contricotropin-releasing factor stimulation of adrenocorticotropin and beta endorphin release effects of acute and chronic stress. Endocrinology 117:23–30.

    PubMed  Google Scholar 

  43. Majewska, M. D., Bisserbe, J. C. and Eskay, R. L. 1985. Glucocorticoids are modulators of GABA receptors in brain. Brain Res. 339:178–182.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S., Poddar, M.K. Effect of short-and long-term exposure to low environmental temperature on brain regional GABA metabolism. Neurochem Res 15, 815–820 (1990). https://doi.org/10.1007/BF00968559

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968559

Key Words

Navigation