Neurochemical Research

, Volume 17, Issue 12, pp 1229–1233 | Cite as

Evaluation of the mechanisms by which gamma-amino-butyric acid in association with phosphatidylserine exerts an antiepileptic effect in the rat

  • E. Benassi
  • G. Besio
  • A. Cupello
  • P. Mainardi
  • A. Patrone
  • M. V. Rapallino
  • L. Vignolo
  • C. W. Loeb
Original Articles


The i.p. injection in rats of GABA (740 mg/Kg) after sonication with an equal amount of phosphatidylserine (PS) has an antiepileptic effect. The injection of plain GABA has no such an effect. Blood, brain and synaptosomal accumulation of exogenous labeled GABA under the two circumstances are evaluated. In the case of GABA/PS injection there is a higher passage of the exogenous labeled neurotransmitter into the blood and brain nerve endings (synaptosomes). A higher synaptosomal accumulation of the exogenous labeled neurotransmitter is found even when GABA and PS are injected separately. Since these accumulation increases occur at a time when there is the antiepileptic effect, they seem relevant to it. Our interpretation of the chain of the events resulting in the antiepileptic action is that the phospholipid facilitates from the beginning the first passage of the exogenous neurotransmitter form the peritoneum to the blood. Then a higher passage to the brain tissue and eventually to the GABA-ergic nerve endings ensues. The brisker accumulation of the exogenous neurotransmitter in the nerve endings could be at the basis of a more efficient GABA-ergic inhibitory control in the brain.

Key Words

GABA Phoshatidylserine antiepileptic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    hawkins, J. E., and Sarett, L. H. 1957. On the efficacy of asparagine, glutamine, gamma-amino-butyric acid and 2-pirrolidinone in preventing chemically induced seizures in mice. Clinica Chimica Acta 2:481–484.Google Scholar
  2. 2.
    Floris, V., Morocutti, C., Gaggino, G., and Napoleone-Capra 1962. L'azione degli acidi gamma-ammino-butirrico e gammaammino-beta-idrossi butirrico sul tracciato elettro-encefalografico dei soggetti normali e sui grafoelementi epilettici. Boll. Soc. Ital. Biol. Sper. 38:538–541.PubMedGoogle Scholar
  3. 3.
    Tower, D. B. 1976. GABA and seizures: clinical correlates in man. Pages 461–478,in E. Roberts, T. N. Chase, and D. B. Tower (eds), GABA in Nervous System Function, Raven Press, New York.Google Scholar
  4. 4.
    Hespe, W., Roberts, E., and Prins, H. 1969. Autoradiographic investigation of the distribution of (14-C)-GABA in tissues of normal and aminooxyacetic acid treated mice. Brain Res. 14:663–671.PubMedGoogle Scholar
  5. 5.
    Kuriyama, E., and Sze, P. Y. 1971. Blood brain barrier to3H-gamma-amino-butyric acid in normal and amino-oxy-acetic acid treated animals. Neuropharmacology 10:103–108.PubMedGoogle Scholar
  6. 6.
    Oldendorf, W. H. 1971. Brain uptake of radiolabeled aminoacids, amines and hexoses after arterial injection. Am. J. Physiol. 221:1624–1639.Google Scholar
  7. 7.
    Van Gelder, N. M., and Elliot, K. A. C. 1958. Disposition of gamma-amino-butyric acid administered to mammals. J. Neurochem. 3:139–143.PubMedGoogle Scholar
  8. 8.
    Levi, G., Amaldi, P., and Morisi, G. 1972. Gamma-amino-butyric acid (GABA) uptake by the developing mouse brain in vivo. Brain Res. 41:435–451.PubMedGoogle Scholar
  9. 9.
    Loescher, W. 1981. Effect of inhibitors of GABA aminotransferase on the metabolism of GABA in brain tissue and synaptosomal fractions. J. of Neurochem. 36:1521–1527.Google Scholar
  10. 10.
    Toth, J., and Lajtha, A. 1981. Elevation of cerebral levels of non essential amino acids in vivo by administration of large doses. Neurochem. Res. 6:1309–1317.PubMedGoogle Scholar
  11. 11.
    Frey, H.-H., and Loescher, W. 1980. Cetyl-GABA: effects on convulsant thresholds in mice and acute toxicity. Neurophasmacology 19:217–220.Google Scholar
  12. 12.
    Toth, E., Lajtha, A., Sarhan, S., and Seiler, N. 1983. Anticonvulsant effects of some inhibitory neurotransmitter amino acids. Neurochem. Res. 8:291–302.PubMedGoogle Scholar
  13. 13.
    Remler, M. P., and Marcussen, W. H. 1981. Radiation controlled focal pharmacology in therapy of experimental epilepsy. Epilepsia 22:153–159.PubMedGoogle Scholar
  14. 14.
    Loeb, C., Benassi, E., Besio, G., Maffini, M., and Tanganelli, P. 1982. Liposome entrapped GABA modifies behavioral and electrographic changes of penicillin-induced epileptic activity. Neurology 32:1234–1238.PubMedGoogle Scholar
  15. 15.
    Loeb, C., Benassi, E., Besio, G., Bo, G. P., Mainardi, P., Scotto, P. A., and Faverio, A. 1984. Antiepileptic effect of gamma-aminobutyric acid and phosphatidylserine in rats. IRCS Medical Science 12:465.Google Scholar
  16. 16.
    Loeb, C., Marinari, U. M., Benassi, E., Besio, G., Cottaiasso, D., Cupello, A., Maffini, M., Mainardi, P., Pronzato, M. A., and Scotto, P. A. 1988. Phosphatidylserine increases in vivo the synaptosomal uptake of exogenous GABA in rats. Exp. Neurol. 99:440–446.PubMedGoogle Scholar
  17. 17.
    Vignolo, L., Cupello, A., Mainardi, P., Rapallino, M. V., Patrone, A., and Loeb, C. 1992. Accumulation of labeled gamma-amino-butyric acid into rat brain and brain synaptosomes after i.p. injection. Neurochem. Res. 17:193–199.PubMedGoogle Scholar
  18. 18.
    Cotman, C. W., and Matthews, D. A. 1971. Synaptic plasma membranes from rat brain synaptosomes: isolation and partial characterization. Biochem. Biophys. Acta 249:380–394.PubMedGoogle Scholar
  19. 19.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  20. 20.
    Cupello, A., Rapallino, M. V., Besio, G., and Mainardi, P. 1986. An electrophoretic method for the determination of the proportion of gamma-amino-butyric acid in a mixture of labeled neurotransmitter and its catabolites. Anal. Biochem. 160:14–16.Google Scholar
  21. 21.
    Loeb, C., Besio, G., Mainardi, P., Scotto, P. E., Benassi, E., and Bo, G. P. 1986. Liposome entrapped GABA inhibits isoniazid-induced epileptogenic activity in rats. Epilepsia 27:98–102.PubMedGoogle Scholar
  22. 22.
    De Feudis, F. V. 1971. Dehydration of the brain by intra-peritoneal injections of hyper-osmotic solutions of GABA and DL-α-alanine. Experientia 27:1284–1285.Google Scholar
  23. 23.
    Loeb, C. W., Bo, G. P., Scotto, P. A., Benassi, E., Besio, G., Mainardi, P., and Faverio, A. 1985. Phospholipids in penicillin-induced seizures. Exp. Neurol. 90:278–280.PubMedGoogle Scholar
  24. 24.
    Toth, J., and Lajtha, A. 1977. Rates of exchanges of free amino acids between plasma and brain in mice. Neurochem. Res. 2:149–160.Google Scholar
  25. 25.
    Smith, Q. R., Momma, S., Aoyagi, M., and Rapoport, S. I. 1987. Kinetics of neutral amino acid transport across the blood brain barrier. J. Neurochem 49:1651–1658.PubMedGoogle Scholar
  26. 26.
    Gram, L., Larsson, O. M., Johnsen, A. H., and Schusboe, A. 1988. Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res. 2:87–95.PubMedGoogle Scholar
  27. 27.
    Wood, J. D., Russel, M. P., and Kurylo, E. 1980. The gamma-amino-butyrate content of nerve endings (synaptosomes) in mice after the intramuscolar injection of gamma-amino-butyrate elevating agents: a possible role in anticonvulsant activity. J. Neurochem. 35:125–130.PubMedGoogle Scholar
  28. 28.
    Wood, J. D., Kurylo, E., and Tsui, S. K. 1981. Interactions of di-n-propylacetate, gabaculine and aminooxyacetic acid: anticonvulsant activity and the gamma-amino-butyrate system. J. Neurochem. 37:1440–1447.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • E. Benassi
    • 1
  • G. Besio
    • 1
  • A. Cupello
    • 2
  • P. Mainardi
    • 1
  • A. Patrone
    • 1
  • M. V. Rapallino
    • 2
  • L. Vignolo
    • 2
  • C. W. Loeb
    • 1
    • 2
  1. 1.Clinca Neurologica dell-Università di GenovaGenovaItaly
  2. 2.Centro di Neurofisiologia CerebraleC.N.R.GenovaItaly

Personalised recommendations