Advertisement

Siberian Mathematical Journal

, Volume 15, Issue 1, pp 24–33 | Cite as

On reproducing kernels for multicircular domains of holomorphy

  • B. S. Zinov'ev
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. A. Fuks, Introduction to the Theory of Analytic Functions of Several Complex Variables [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  2. 2.
    A. A. Temlyakov, “Integral representations,” Dokl. Akad. Nauk SSSR,131, No. 2 263–264 (1960).Google Scholar
  3. 3.
    Zh. Lere, Differential and Integral Calculus in Complex Manifolds [in Russian], IL, Moscow (1961).Google Scholar
  4. 4.
    G. M. Khenkin “Integral representation of functions holomorphic in strictly pseudoconvex regions and some applications,” Matem. Sb.,78, No. 4 611–632 (1969).Google Scholar
  5. 5.
    L. Bungart, “Holomorphic functions with values in locally convex spaces and applications to integral formulas,” Trans. Amer. Math. Soc.111, No. 2, 317–344 (1964).Google Scholar
  6. 6.
    A. M. Gleason, “The abstract theorem of Cauchy-Weil,” Pacific J. Math.,12, No. 2 511–525 (1962).Google Scholar
  7. 7.
    B. A. Fuks, Special Chapters of the Theory of Analytic Functions of Several Complex Variables [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  8. 8.
    L. A. Aizenberg, “Integral representations of functions holomorphic in n-circular regions (“Extension” of the Szego kernel),” Matem. Sb.65, No. 1, 104–143 (1964).Google Scholar
  9. 9.
    L. A. Aizenberg, “Integral representations of holomorphic functions of several complex variables,” Trudy Mosk. Matem. O-va,21, 3–26 (1970).Google Scholar
  10. 10.
    B. S. Zinov'ev “Integral representations with Szego and Bergman kernals for a class of n-circular regions and their “extensions”,” VINITI, Moscow, No. 1742-70, Deposited (1970), pp. 1–37.Google Scholar
  11. 11.
    B. S. Zinov'ev, “On reproducing kernals for n-circular regions and linear convexity,” Candidate Dissertation [in Russian], Ukr. State University, Krasnoyarsk (1971).Google Scholar
  12. 12.
    M. A. Borodin, “Some integral representations of functions holomorphic in bicircular regions,” Sib. Matem. Zh.,10, No. 2, 287–297 (1969).Google Scholar
  13. 13.
    B. S. Zinov'ev, “On some integral representations of functions holomorphic in bicircular regions,” Uchenye Zap. Mosk. Obl. Ped. In-ta,137, No. 8, 205–209 (1964).Google Scholar
  14. 14.
    A. T. Khvostov, “Investigations of some integral representations of analytic functions of two complex variables,” Uchenye Zap. Mosk. Obl. Ped. In-ta,269, No. 14, 54–64 (1969).Google Scholar
  15. 15.
    B. Chalmers, “Sur le comportment, a la frontiere, de la fonction-noyau de Bergman,” Compts. Rends. Acad. Sci.,266, No. 33, A 1132-A 1134 (1968).Google Scholar
  16. 16.
    L. A. Aizenberg, “Integral representations of holomorphic functions of several complex variables and some of their applications,” Doctoral Dissertation [in Russian], MGU, Moscow (1967).Google Scholar
  17. 17.
    B. S. Zinov'ev, “Reproducing Bergman kernels for n-circular regions, their “extension” and connection with Szego kernels,” Questions in the Geometric Theory of Functions, Issue 6, Trudy-Tomsk Un-ta, 210, 23–33 (1969).Google Scholar
  18. 18.
    A. P. Mishina and I. V. Proskuryakov, Higher Algebra. Linear Algebra, Polynomials, and General Algebra [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  19. 19.
    V. S. Vladimirov, Methods of the Theory of Functions of Several Complex Variables [in Russian], Nauka, Moscow (1969).Google Scholar
  20. 20.
    B. S. Zinov'ev, and A. I. Balinov, “Application of the theorems of “extension” of integral representations with the Bergman and Szego kernels to the hypersphere,” Sbornik Nauchnykh Trudov Mekhan. Fak-ta Krasnoyarskogo Politekhn. In-ta, Krasnoyarsk, 161–163 (1970).Google Scholar
  21. 21.
    Z. Opial and J. Siciak, “Integral formulas for functions holomorphic in convex n-circular domains,” Zesz. Nauk Univ. Jagiell,9, No. 77, 67–75 (1963).Google Scholar
  22. 22.
    A. A. Temlyakov, “Integral representation of functions of two complex variables,” Izv. Akad. Nauk SSSR Ser. Matem.,21, 89–92 (1957).Google Scholar
  23. 23.
    B. I. Odvirko-Budko, “The construction of a holomorphic function of n(n>1) variables with given zero surfaces in multicircular regions,” Thesis reports of the All-Soviet conference in the theory of functions of a complex variable FTINT AN USSR, Khar'kov, 162–163 (1971).Google Scholar
  24. 24.
    B. S. Zinov'ev, “Integral representations with Szego (Bergman) kernels for a class of n-circular regions and their “extensions”,” Thesis reports of the All-Soviet Symposium in the theory of holomorphic functions of several complex variables Sib. Otd. Akad. Nauk SSSR, Krasnoyarsk, 14–15 (1969).Google Scholar
  25. 25.
    B. S. Zinov'ev, “On Bergman, Poisson and Schwartz kernels for multicircular regions of holomorphy,” Thesis Reports of the All-Soviet Conference in the Theory of Functions of a Complex Variable, FTINT AN USSR, Khar'kov, 83–85 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • B. S. Zinov'ev

There are no affiliations available

Personalised recommendations