Siberian Mathematical Journal

, Volume 22, Issue 6, pp 949–964 | Cite as

A class of sharp inequalities for polynomials, moments, and analytic functions

  • S. Ya. Khavinson


Analytic Function Sharp Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    S. Ya. Khavinson, “On a class of extremal problems for polynomials,” Dokl. Akad. Nauk SSSR,130, 997–1000 (1960).Google Scholar
  2. 2.
    S. Ya. Khavinson, “Extremal and approximation problems with supplementary conditions,” in: Studies on Contemporary Problems in the Constructive Theory of Functions [in Russian], Nauka, Moscow (1961). pp. 347–352.Google Scholar
  3. 3.
    S. Ya. Khavinson, “On two classes of extremal problems for polynomials and moments,” Izv. Akad. Nauk SSSR, Ser. Mat.,25, 557–590 (1961).Google Scholar
  4. 4.
    E. Sh. Chatsaya, “On the uniqueness and stability of the polynomial of best approximation,” Uch. Zap. Leningr. Gos. Pedagog. Inst. im. A. I. Gertsena,387, 262–284 (1968).Google Scholar
  5. 5.
    V. M. Tikhomirov, Some Questions in the Theory of Approximation [in Russian], Moscow State Univ., Moscow (1976).Google Scholar
  6. 6.
    N. I. Akhiezer, Lectures on the Theory of Approximation, [in Russian], Nauka, Moscow (1965).Google Scholar
  7. 7.
    M. M. Dzhrbashyan, “On estimating holomorphic functions subject to supplementary conditions in the unit disk,” Usp. Mat. Nauk,20, 148–150 (1965).Google Scholar
  8. 8.
    M. G. Krein, “The L-probiem of moments in an abstract normed space,” in: The L-Problem of Moments [in Russian], N. I. Akhiezer and M. G. Krein, DNTVU, Kharkov (1938).Google Scholar
  9. 9.
    S. M. Nikol'skii, “Approximating functions in the mean by trigonometric polynomials,” Izv. Akad. Nauk SSSR, Ser. Mat.,10, 207–256 (1946).Google Scholar
  10. 10.
    N. P. Korneichuk, Extremal Problems in the Theory of Approximation [in Russian], Nauka, Moscow (1976).Google Scholar
  11. 11.
    M. G. Krein and A. A. Nudel'man, The Problem of Markov Moments and Extremal Problems [in Russian], Nauka, Moscow (1973).Google Scholar
  12. 12.
    N. Dunford and J. T. Schwartz, Linear Operators, Vol. I, Wiley-Interscience, New York (1959).Google Scholar
  13. 13.
    L. G. Shnirel'man, “On uniform approximation,” Izv. Akad. Nauk SSSR. Ser. Mat.,2, 53–60 (1938).Google Scholar
  14. 14.
    S. N. Bernshtein, Extremal Properties of Polynomials [in Russian], ONTI, Moscow-Leningrad (1937).Google Scholar
  15. 15.
    P. K. Suetin, Classical Orthogonal Polynomial [in Russian], Nauka, Moscow (1976).Google Scholar
  16. 16.
    S. Ya. Al'per, “On the asymptotic values of the best approximation of analytic functions in the complex plane,” Usp. Mat. Nauk,16, 131–134 (1959).Google Scholar
  17. 17.
    V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow (1977).Google Scholar
  18. 18.
    I. I. Privalov, Boundary Properties of Analytic Functions [in Russian], Nauka, Moscow (1950).Google Scholar
  19. 19.
    S. Ya. Khavinson, “On extremal problems for functions satisfying supplementary conditions inside a region, and applications of these problems to the question of approximation,” Dokl. Akad. Nauk SSSR,135, 270–273 (1960).Google Scholar
  20. 20.
    S. Ya. Khavinson, “The theory of extremal problems for bounded analytic functions satisfying supplementary conditions inside a region,” Usp. Mat. Nauk,18, 25–98 (1963).Google Scholar
  21. 21.
    G. M. Goluzin, ”Estimates for analytic functions with bounded mean absolute value,” Tr. Mat. Inst. Akad. Nauk SSSR,18 (1946).Google Scholar
  22. 22.
    K. DeLeew and W. Rudin, “Extreme points and extremum problems in H1,” Pac. J. Math.,8, 465–485 (1958).Google Scholar
  23. 23.
    S. Ya. Khavinson, “Extremal problems for certain classes of analytic functions in finitely connected regions,” Mat. Sb.,36, 445–478 (1955).Google Scholar
  24. 24.
    L. Carleson and S. Jacobs, “Best uniform approximation by analytic functions,” Ark. Mat.,10, 219–229 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • S. Ya. Khavinson

There are no affiliations available

Personalised recommendations