Lithuanian Mathematical Journal

, Volume 24, Issue 3, pp 225–238 | Cite as

Optimal statistical estimators of spectral density in L2

  • R. Bentkus


Spectral Density Statistical Estimator Optimal Statistical Estimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. G. Alekseev, “Choice of spectral window in estimating the spectrum of a Gaussian stationary stochastic process,” Probl. Peredachi Inf.,7, No. 4, 45–54 (1971).Google Scholar
  2. 2.
    V. G. Alekseev, “Practical recommendations on spectral analysis of Gaussian stationary stochastic processes,” Probl. Peredachi Inf.,9, No. 4, 42–48 (1973).Google Scholar
  3. 3.
    V. G. Alekseev, “Calculation of spectra of stationary stochastic processes for samples of large size,” Probl. Peredach. Inf.,16, No. 1, 42–49 (1980).Google Scholar
  4. 4.
    R. Yu. Bentkus and Yu. V. Sushinskas, “Optimal statistical estimates of spectral density,” Dokl. Akad. Nauk SSSR,263, No. 4, 782–786 (1982).Google Scholar
  5. 5.
    D. Brillinger, Time Series. Data Processing and Theory [Russian translation], Mir, Moscow (1980).Google Scholar
  6. 6.
    S. Yu. Efroimovich and M. S. Pinsker, “Estimation of square-integrable spectral density from a sequence of observations,” Probl. Peredach. Inf.,17, No. 3, 50–68 (1981).Google Scholar
  7. 7.
    I. G. Zhurbenko, “Optimal properties of certain statistics of spectral density,” Liet. Mat. Rinkinys,20, No. 1, 39–50 (1980).Google Scholar
  8. 8.
    I. G. Zhurbenko, “Effectiveness of estimates of spectral density of a stationary process,” Teor. Veroyatn. Primen.,25, No. 3, 476–489 (1980).Google Scholar
  9. 9.
    I. G. Zhurbenko, Spectral Analysis of Time Series [in Russian], Moscow State Univ. (1982).Google Scholar
  10. 10.
    V. P. Leonov and A. N. Shiryaev, “Technique of calculating cumulants,” Teor. Veroyatn. Primen.,4, No. 3, 342–355 (1959).Google Scholar
  11. 11.
    R. Otnes and L. Enokson, Applied Analysis of Time Series. Basic Methods [Russian translation], Mir, Moscow (1982).Google Scholar
  12. 12.
    P. Bloomfield, Fourier Analysis of Time Series: An Introduction, Wiley, New York (1976).Google Scholar
  13. 13.
    U. Grenander and M. Rosenblatt, Statistical Analysis of Time Series, Almqvist and Wiksell, Stockholm (1956).Google Scholar
  14. 14.
    E. Parzen, “On asymptotically efficient consistent estimates of the spectral density function of a stationary time series,” J. R. Statist. Soc., B,20, No. 2, 303–322.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • R. Bentkus

There are no affiliations available

Personalised recommendations