Lithuanian Mathematical Journal

, Volume 22, Issue 1, pp 18–28 | Cite as

Geometry of systems of differential equations. III. Intrinsic formalization of differential-geometric structures

  • R. V. Vosilyus
Article
  • 15 Downloads

Keywords

Differential Equation Intrinsic Formalization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. I. Bliznikas, “Geometry of certain systems of partial differential equations,” in: Memoirs of the Geometry Seminar [in Russian], Vol. 5, Inst. Nauchn. Inf. Akad. Nauk SSSR, Moscow (1974), pp. 153–168.Google Scholar
  2. 2.
    V. I. Bliznikas, “Geometry of systems of first order partial differential equations,” in: Memoirs of the Geometry Seminar [in Russian], Vol. 2, Inst. Nauchn. Inf. Akad. Nauk SSSR, Moscow (1969), pp. 33–53.Google Scholar
  3. 3.
    V. I. Bliznikas and Z. Yu. Lupeikis, “Geometry of differential equations,” in: Algebra. Topology. Geometry [in Russian], Itogi Nauki i Tekhniki, VINITI Akad. Nauk SSSR, Moscow (1973), pp. 209–259.Google Scholar
  4. 4.
    R. V. Vosilyus, “Spaces of geometric objects and extension of bundles. III,” Liet. Mat. Rinkinys,13, No. 4, 67–81 (1973).Google Scholar
  5. 5.
    R. V. Vosilyus, “Categories of spaces with structural equations,” Liet. Mat. Rinkinys,18, No. 1, 59–78 (1978).Google Scholar
  6. 6.
    H. Goldschmidt, “Sur la structure des equations de Lie: II. Equations formellement transitives,” J. Diff. Geom.,7, 67–95 (1972).Google Scholar
  7. 7.
    A. Kumpera and D. Spencer, Lie Equations. Vol. I: General Theory, Ann. Math. Studies,16, No. 73, 239 (1972).Google Scholar
  8. 8.
    Ngô Van Quê, “Du prolongement des espaces fibrés et des structures infinitésimales,” Ann. Inst. Fourier Grenoble,17, 157–223 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • R. V. Vosilyus

There are no affiliations available

Personalised recommendations