Advertisement

Siberian Mathematical Journal

, Volume 17, Issue 3, pp 399–411 | Cite as

Quasiconformal mappings and spaces of functions with generalized first derivatives

  • S. K. Vodop'yanov
  • V. M. Gol'dshtein
Article

Keywords

Quasiconformal Mapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Yu. G. Reshetnyak and B. V. Shabat, Proceedings of the 4th All-Union Mathematical Congress [in Russian], Leningrad, July 3–12, 1961, Vol. 2, Izd. Akad. Nauk SSSR (Leningrad Otdel.), Leningrad (1964), pp. 672–680.Google Scholar
  2. 2.
    G. D. Mostow, “Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms,” Inst. Hautes Études Sci. Publ. Math.,34, 53–104 (1968).Google Scholar
  3. 3.
    S. K. Vodop'yanov and V. M. Gol'dshtein, “Removable sets for the spaces Wp1 of quasiconformal and quasiisometric mappings,” Dokl. Akad. Nauk SSSR,220, No. 4, 769–771 (1975).Google Scholar
  4. 4.
    V. T. Boltyanskii, “Homotopy theory of continuous mappings and vector fields,” Trudy Matem. Inst. Akad. Nauk SSSR,47 (1975).Google Scholar
  5. 5.
    T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer, Berlin-Gottingen-Heidelberg (1955).Google Scholar
  6. 6.
    Yu. G. Reshetnyak, “The concept of capacity in the theory of functions with generalized derivatives,” Sibirsk. Matem. Zh.,10, No. 5, 1109–1138 (1969).Google Scholar
  7. 7.
    V. G. Maz'ya and V. P. Khavin, “Nonlinear potential theory,” Usp. Matem. Nauk,27, No. 6, 67–138 (1972).Google Scholar
  8. 8.
    P. I. Lizorkin, “Characteristics of boundary values of functions in Lpr(En) on hyperplnes” Dokl. Adad. Nauk SSSR,150, No. 5, 984–986 (1963).Google Scholar
  9. 9.
    V. G. Maz'ya, “Continuity at a boundary point of solutions of quasilinear elliptic equations,” Vest. Leningrad. Univ., Ser. Matem., Mekh., Astronom.,13, No. 3, 42–55 (1970).Google Scholar
  10. 10.
    N. N. Ural'tseva, “Degenerate quasilinear elliptic systems,” Zap. Nauch. Seminar. LOMI,7, 184–222 (1968).Google Scholar
  11. 11.
    Yu. G. Reshetnyak, “Space mappings with bounded distortion,” Sibirsk. Matem. Zh.,8, No. 3, 629–658 (1967).Google Scholar
  12. 12.
    J. Deny and J. L. Lions, “Les espaces du type de Beppo Levi,” Ann. Inst. Fourier,5, 305–370 (1953–1954).Google Scholar
  13. 13.
    B. Z. Vulikh, Introduction to the Theory of Partially Ordered Spaces [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  14. 14.
    S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics [in Russian], Izd. Leningrad. Univ., Leningrad (1950).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • S. K. Vodop'yanov
  • V. M. Gol'dshtein

There are no affiliations available

Personalised recommendations