Siberian Mathematical Journal

, Volume 7, Issue 1, pp 127–132 | Cite as

Existence and conjugacy of hall subgroups and hall bases for certain classes of finite groups

  • I. B. Raskina


Finite Group Hall Subgroup Hall Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    P. A. Gol'berg, “Sylow bases of II-separable groups,” Doklady Ak. nauk SSSR,64, No. 5 (1949), pp. 615–618.Google Scholar
  2. 2.
    P. A. Gol'berg, “Hall bases of certain classes of groups,” Sib. matem. zh.,1, No. 1 (1960), pp. 14–44.Google Scholar
  3. 3.
    A. G. Kurosh, Group Theory [in Russian], Gostekhizdat, Moscow (1953).Google Scholar
  4. 4.
    P. Hall, Theorems like Sylow's, Proc. London Math. Soc.,6, No. 22 (1956), pp. 286–304.Google Scholar
  5. 5.
    P. Hall, A note on soluble groups, J. London Math. Soc.,3, (1928), pp. 98–106.Google Scholar
  6. 6.
    S. A. Chunikhin, “Concerning II-separable groups,” Doklady Ak. nauk SSSR,59, No. 3 (1948).Google Scholar
  7. 7.
    H. Zassenhaus Group Theory [in German], Springer-Verlag, Leipzig, Berlin (1937).Google Scholar
  8. 8.
    W. Feit and J. G. Thompson, A solvability criterion for finite groups and some consequences, Proc. Nat. Acad. Sci. U. S. A.,48, No. 10 (1962), pp. 968–974.Google Scholar
  9. 9.
    S. A. Chunikhin, “One II-Sylow theorem deriving from the hypothesis of solvability of groups of odd order,” Doklady Ak. nauk BSSR,6, No. 6 (1962), pp. 345–346.Google Scholar

Copyright information

© Consultants Bureau 1966

Authors and Affiliations

  • I. B. Raskina

There are no affiliations available

Personalised recommendations