Neurochemical Research

, Volume 11, Issue 12, pp 1677–1682 | Cite as

d-pipecolic acid inhibits ethanol tolerance in mice

  • Gyula Szabó
  • Gábor L. Kovács
  • Lajos Baláspiri
  • Gyula Telegdy
Original Articles


The effects of graded doses ofd-pipecolic acid (0.005–5 μg/animals s.c.) on tolerance to the hypothermic effect of ethanol (4 g/kg i.p.) were investigated in mice.d-pipecolic acid itself did not change the core temperature or the acute hypothermic response to a single dose of ethanol. Repeatedd-pipecolic acid administration, however, blocked the development of tolerance to the hypothermic effect of ethanol. The development of tolerance could be observed in the control group. It is assumed thatd-pipecolic acid is capable of counteracting the tolerance effect of ethanol.


Single Dose Core Temperature Ethanol Tolerance Acid Administration Hypothermic Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Charles, A. K., Chang, Y. F., andMyslinski, N. R. 1983. Blood brain barrier transport ofl-pipecolic acid in various rat brain regions. Neurochem. Res. 9:1087–1096.Google Scholar
  2. 2.
    Crabbe, J. C., Rigter, H., Uijen, J., andStrijbos, C. 1979. Rapid development of tolerance to the hypothermic effect of ethanol in mice. J. Pharmacol. Exp. Ther. 208:128–133.Google Scholar
  3. 3.
    Giacobini, E. 1983. Amino acids of the brain. Pages 583–605,in A. Lajtha (ed.) Handbook of Neurochemistry, Vol. 3, Plenum Press, New York.Google Scholar
  4. 4.
    Kasé, Y., Takahama, K., andHashimoto, T. 1980. Electrophoretic study of pipecolic acid. Brain Res. 193:608–613.Google Scholar
  5. 5.
    Kim, J. S., andGiacobini, E. 1984. Quantitative determination and regional distribution of pipecolic acid in rodent brain. Neurochem. Res. 9:1559–1569.Google Scholar
  6. 6.
    Kovács, G. L., Szontágh, L., Baláspiri, L., Hópi, K., Bohus, P., Telegdy, G. 1981. On the mode of action of an oxytocin derivative (Z-Pro-d-Leu) on morphine dependence in mice. Neuropharmacology 20:647–651.Google Scholar
  7. 7.
    Kovács, G. L., Horváth, Zs., Sarnyai, Z., Faludi, M., andTelegdy, G. 1985. Oxytocin and a C-terminal derivative (Z-prolyl-d-leucine) attenuate tolerance to and dependence on morphine and interact with dopaminergic neurotransmission in the mouse brain. Neuropharmacology. 24:413–419.Google Scholar
  8. 8.
    Miyata, T., Kamata, K., Noguchi, M., Okano, Y., andKasé, Y. 1973. Pharmacological studies on alicyclic amines XV: Intracerebral administration of pipecolic acid. Jpn. J. Pharmacol. 23(Suppl.):81.Google Scholar
  9. 9.
    Nomura, Y., Schmidt-Glenewinkel, T., andGiacobini, E. 1978. In vitro formation of piperidine, cadaverine and pipecolic acid in chick and mouse brain development. Dev. Neurosci. 1:239–249.Google Scholar
  10. 10.
    Nomura, Y., Okuma, Y., Schmidt-Glenewinkel, T., andGiacobini, E. 1979. A calcium-dependent, high potassium induced release of pipecolic acid from rat brain slices. J. Neurochem. 33:803–805.Google Scholar
  11. 11.
    Nomura, Y., Schmidt-Glenewinkel, T., andGiacobini, E. 1980. Uptake of piperidine and pipecolic acid by synaptomomes from mouse brain. Neurochem. Res. 5:1163–1173.Google Scholar
  12. 12.
    Szabó, G., Kovács, G. L., Baláspiri, L., andTelegdy, G. 1986. Effect on brain monoamines in the rat of sustituted and protected analogues of the oxytocin fragment, prolyl-leucyl-glycinamide following N-terminal substitution byd- andl-pipecolic acid. Acta Phys. Hung. 67:155–161.Google Scholar
  13. 13.
    Szabó, G., Kovács, G. L., Székeli, S., andTelegdy, G. 1985. The effects of neurohypophyseal hormones on tolerance to the hypothermic effect of ethanol. Alcohol 2:567–574.Google Scholar
  14. 14.
    Tabakoff, B., Melchior, C. L., andHoffman, P. L. 1982. Commentary on ethanol tolerance. Alcoholism: Clin. Exp. Res. 6:252–259.Google Scholar
  15. 15.
    Takahama, K., Miyata, T., Hashimoto, T., Okano, Y., Hitoshi, T., andKasé, Y. 1982. Pipecolic acid: A new type of alfa-amino acid possessing bicuculline-sensitive action mammalian brain. Brain Res. 239:294–298.Google Scholar
  16. 16.
    Takahama, K., Tokutomi, N., Okano, Y., andMiyata, T. 1983. Gaba-mimetic action of pipecolic acid in the brain but not in the periphery. Page 67,in International Symposium On Neurotransmitter Receptor Regulation, Interactions and Coupling to the Effectors, Hiroshima, Japan (abstr.).Google Scholar
  17. 17.
    Thomas, G. H., Haslam, R. H. A., Batshaw, M. L., Capute, A. J., Neidengard, L., andRanson, J. L. 1975. Hyperpipecolic acidemia associated with hepatomegaly, mental retardation, optic nerve dysplasia and progressive neurological disease. Clin. Genetics 8:376–382.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Gyula Szabó
    • 1
  • Gábor L. Kovács
    • 1
  • Lajos Baláspiri
    • 2
  • Gyula Telegdy
    • 1
  1. 1.Department of PathophysiologyUniversity Medical SchoolSzegedHungary
  2. 2.Department of Medical ChemistryUniversity Medical SchoolSzegedHungary

Personalised recommendations