Skip to main content
Log in

PC12 variants deficient in norepinephrine transporter mRNA have wild type activities of several other related transporters

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Wild type PC12 pheochromocytoma cells express a Na+-dependent norepinephrine transporter that operates in the uptake of catecholamines. In addition to the previously described Na+-dependent system A for the uptake of α-amino-isobutyric acid and system Gly for glycine, we have identified two other Na+-dependent transporter systems for amino acid uptake in these cells: 1) system β for β-alanine and taurine; and 2) a system for creatine. Uptake of α-amino-isobutyric acid, glycine, β-alanine, and creatine is not affected in some PC12 variants that were previously shown to be deficient in catecholamine uptake and to have decreased levels of norepinephrine transporter mRNA. We have isolated two PC12 cDNA clones that are essentially identical in sequence to recently reported cDNAs for rat brain taurine and creatine transporters, respectively, and a third cDNA that appears to code for a novel transporter. mRNAs for these three transporters are present at wild type levels in those variants that express no or little norepinephrine transporter mRNA. These results support the notion that the expression of catecholamine reuptake transporters may be particularly susceptible to down-regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iversen, L. L. 1970. Neuronal uptake processes for amines and amino acids. Adv. Biochem. Psychopharmacol. 2:109–132.

    Google Scholar 

  2. Christensen, H. N., and Markowske, M. 1985. Recognition chemistry of anionic amino acids for hepatocyte transport and for neurotransmittory action compared. Life Sci. 33:2255–2267.

    Google Scholar 

  3. Shotwell, M. A., Kilberg, M. S., and Oxender, D. L. 1983. The regulation of neutral amino acid transport in mammalian cells. Biochim. Biophys. Acta 737:267–284.

    Google Scholar 

  4. Christensen, H. N. 1984. Organic ion transport during seven decades-the amino acids. Biochim. Biophys. Acta 779:255–269.

    Google Scholar 

  5. Amara, S. G., and Kuhar, M. J. 1993. Neurotransmitter transporters: recent progress. Annu. Rev. Neurosci. 16:73–93.

    Google Scholar 

  6. Guastella, J., Nelson, N., Nelson, H., Czyzyk, L., Keynan, S., Miedel, M. C., Davidson, N., Lester, H. A., and Kanner, B. I. 1990. Cloning and expression of a brain GABA transporter. Science 249:1303–1306.

    Google Scholar 

  7. Giros, B., Mestikawy, S. E., Bertrand, L., and Caron, M. G. 1991. Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett. 295:149–154.

    Google Scholar 

  8. Kilty, J. E., Lorang, D., and Amara, S. G. 1991. Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science 254:578–579.

    Google Scholar 

  9. Pacholcyzk, T., Blakely, R. D., and Amara, S. G. 1991. Expression cloning of a cocaine-and antidepressant-sensitive human noradrenaline transporter. Nature, 350:350–353.

    Google Scholar 

  10. Smith, K. E., Borden, L. A., Hartig, P. R., Branchek, T., and Weinshank, R. L. 1992. Cloning of a glycine transporter reveals colocalization with NMDA receptors. Neuron 8:927–935.

    Google Scholar 

  11. Shimada, S., Kitayama, S., Lin, C.-L., Patel, A., Nanthakumar, E., Gregor, P., Kuhar, M., and Uhl, G. 1991. Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science, 254:576–578.

    Google Scholar 

  12. Guastella, J., Brecha, N., Weigmann, C., Lester, H. A., and Davidson, N. 1992. Cloning, expression, and localization of a rat brain high-affinity glycine transporter. Proc. Natl. Acad. Sci U. S. A. 89:7189–7193.

    Google Scholar 

  13. Kanai, Y., and Hediger, M. A. 1992. Primary structure and functional characterization of a high affinity glutamate transporter. Nature 360:467–471.

    Google Scholar 

  14. Pines, G., Danbolt, N. C., Bjoras, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E., and Kanner, B. I. 1992 Cloning and expression of a rat brain L-glutamate transporter. Nature 360:464–467.

    Google Scholar 

  15. Storck, T., Schulte, S., Hofmann, K., and Stoffel, W. 1992. Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc. Natl. Acad. Sci. U.S.A. 89:10955–10959.

    Google Scholar 

  16. Greene, L. A., and Tischler, A. S. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. U. S. A. 73:2424–2428.

    Google Scholar 

  17. Greene, L. A., and Rein, G. 1977. Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheochromocytoma cells. Brain Res. 129:247–263.

    Google Scholar 

  18. Friedrich, U., and Bonisch, H. 1986. The neuronal noradrenaline transport system of PC12 cells: Kinetic analysis of the interaction between noradrenaline, Na+ and Cl in transport. Naunyn-Schmeideburgs Arch. Pharmacol. 333:246–252.

    Google Scholar 

  19. Koide, M., Cho, A. K., and Howard, B. D. 1986. Characterization of xylamine binding to proteins of PC12 pheochromocytoma cells. J. Neurochem. 47:1277–1285.

    Google Scholar 

  20. Ramachandran, B., Houben, K., Rozenberg, Y. Y., Haigh, J. R., Varpetian, A., and Howard, B. D. 1993. Differential expression of transporters for norepinephrine and glutamate, in wild type, variant, and Wnt1-expressing PC12 cells. J. Biol. Chem. 268:23891–23897.

    Google Scholar 

  21. Bitler, C. M., Zhang, M.-B., and Howard, B. D. 1986. PC12 variants deficient in catecholamine transport. J. Neurochem. 47:1286–1293.

    Google Scholar 

  22. Howard, B. D., Cho, A. K., Zhang, M., Koide, M., and Lin, S. 1990. Covalent labeling of the cocaine-sensitive catecholamine transporter. J. Neurosci. Res. 26:149–158.

    Google Scholar 

  23. Denton, T., and Howard, B. D. 1987. A dopaminergic cell line variant resistant to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine. J. Neurochem. 49:622–630.

    Google Scholar 

  24. Andersen, J. K., Zhang, M.-b., Zhong, X.-h., Rozenberg, Y. Y., and Howard, B. D. 1990. MPTP-Resistant flat cell PC12 variants having a partial loss of transformed phenotype. J. Neurochem. 55:559–567.

    Google Scholar 

  25. Seed, B., and Aruffa, A. 1987: Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselective procedure. Proc. Natl. Acad. Sci. U.S.A. 84:3365–3369.

    Google Scholar 

  26. Liu, Y., Roghani, A., and Edwards, R. H. 1992. Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium. Proc. Natl. Acad. Sci. U. S. A. 89:9074–9078.

    Google Scholar 

  27. Barnes, W. M. 1987. Sequencing DNA with dideoxyribonucleotides as chain terminators: Hints and strategies for big projects. Methods Enzymol. 152:538–558.

    Google Scholar 

  28. Chirgwin, J. M., Przbyla, A. E., MacDonald, R. J., and Rutter, W. J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299.

    Google Scholar 

  29. Aviv, H., and Leder, P. 1972. Purification of biologically active globin messenger RNA by chromatography on oligothymidilic acidcellulose. Proc. Natl. Acad. Sci. U.S.A. 69:1408–1412.

    Google Scholar 

  30. Maniatis, T., Fritsch, E. F., and Sambook, J., 1982. Molecular Cloning, pp. 10545, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  31. Thomas, P. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. U.S.A. 77:5201–5205.

    Google Scholar 

  32. Stanley, P. E., and Williams, S. G. 1962. Use of the scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal. Biochem. 29:381–392.

    Google Scholar 

  33. Strehler, B. L., and Totter, J. K. 1954. Determination of ATP and related compounds: firefly luminescence and other methods. Methods Biochem. Anal. 1:341–346.

    Google Scholar 

  34. McGuire, J. C., and Greene, L. A. 1979. Rapid stimulation by nerve growth factor of amino acid uptake by clonal PC12 pheochromocytoma cells. J. Biol. Chem. 254:3362–3367.

    Google Scholar 

  35. Moller, A., and Hamprecht, B. 1989. Creatine transport in cultured cells of rat and mouse brain. J. Neurochem. 52:544–550.

    Google Scholar 

  36. Tierney, N. A. and Peters, J. P. 1943. The mode of excretion of creatine and creatine metabolism in thyroid disease. J. Clinic. Invest. 22:595–602.

    Google Scholar 

  37. Allinson, M. J. C. 1945. A specific enzymatic method for the determination of creatine and creatinine in blood. J. Biol. Chem. 157:169–172.

    Google Scholar 

  38. Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H. M. 1992. Intracellular compartmentation, structure and function of creatine isoenzymes in tissues with high and fluctuating energy demands: the “phosphocreatine circuit” for cellular energy homeostasis. Biochem. J. 281:21–40.

    Google Scholar 

  39. Reynolds, E. E., Melega, W., and Howard, B. D. 1982. Adenosine 5′-triphosphate independent secretion from PC12 pheochromocytoma cells Biochemistry 21:4795–4799.

    Google Scholar 

  40. Smith, K. E., Borden, L. A., Wang, C. D., Hartig, P. R.., Branchek, T., and Weinshank, R. L. 1992. Cloning and expression of a high affinity taurine transporter from rat brain. Mol. Pharmacol. 42:563–569.

    Google Scholar 

  41. Guimbal, C., and Kilimann, M. W. 1993: A Na+-dependent creastine transporter in rabbit brain, muscle, heart, and kidney. J. Biol. Chem. 268:8418–8421.

    Google Scholar 

  42. Liu, Q.-R., Mandiyan, S., Lopez-Corcuera, B., Nelson, H., and Nelson, N. 1993. A rat brain cDNA encoding the neurotransmitter transporter with an unusual structure. FEBS Lett. 315:114–118.

    Google Scholar 

  43. Fitch, C. D., Shields, R. P., Payne, W. F., and Dacus, J. M. 1968. Creatine metabolism in skeletal muscle. J. Biol. Chem. 243:2024–2027.

    Google Scholar 

  44. Kong, C.-T., Yet, S.-F., and Lever, J. E. 1993. Cloning and expression of a mammalian Na+/amino acid cotransporter with sequence similarity to Na+/glucose cotransporters. J. Biol. Chem. 268:1509–1512.

    Google Scholar 

  45. Bannon, M. J., Poosch, M. S., Xia, Y., Goebel, D. J., Cassin, B., and Kapatos, G. 1992. Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age. Proc. Natl. Acad. Sci. U.S.A. 89:7095–7099.

    Google Scholar 

  46. Xia, Y., Goebel, D. O., Kapatos, G., and Bannon, M. J. 1992. Quantitation of rat dopamine transporter m RNA: Effects of cocaine treatment and withdrawal. J. Neurochem. 59:1179–1182.

    Google Scholar 

  47. Uhl, G. R., Kitayama, S., Gregor, P., Nanthaakumar, E., Perisco, A., and Shimada, S. 1992. Neurotransmitter transporter family cDNAs in a rat midbrain library: orphan transporters suggest sizable structural variations. Mol. Brain Res. 16:353–359.

    Google Scholar 

  48. Mayser, W., Schloss, P., and Betz, H. 1992. Primary structure and functional expression of a choline transporter, expressed in the rat nervous system. FEBS Lett. 305:31–36.

    Google Scholar 

  49. Melega, W. P., and Howard, B. D. 1980. Choline and acetylcholine metabolism in PC12 secretory cells. Biochemistry 20:4477–4483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houben, K., Dardashti, K. & Howard, B.D. PC12 variants deficient in norepinephrine transporter mRNA have wild type activities of several other related transporters. Neurochem Res 19, 743–751 (1994). https://doi.org/10.1007/BF00967715

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967715

Key Words

Navigation