Neurochemical Research

, Volume 19, Issue 6, pp 665–671 | Cite as

Superoxide dismutase, catalase, and U78517F attenuate neuronal damage in gerbils with repeated brief ischemic insults

  • Debbie Truelove
  • Ashfaq Shuaib
  • Sadiq Ijaz
  • Steve Richardson
  • Jay Kalra
Original Articles

Abstract

Repeated ischemic insults at one hour intervals result in more severe neuronal damage than a single similar duration insult. The mechanism for the more severe damage with repetitive ischemia is not fully understood. We hypothesized that the prolonged reperfusion periods between the relatively short ischemic insults may result in a pronounced generation of oxygen free radicals (OFRs). In this study, we tested the protective effects of superoxide dismutase (SOD) and catalase (alone or in combination), and U78517F in a gerbil model of repetitive ischemia. Three episodes (two min each) of bilateral carotid occlusion were used at one hour intervals to produce repetitive ischemia. Superoxide dismutase and catalase were infused via osmotic pumps into the lateral ventricles. Two doses of U78517F were given three times per animal, one half hour prior to each occlusion. Neuronal damage was assessed 7 days later in several brain regions using the silver staining technique. The Mann-Whitney U test was used for statistical comparison. Superoxide dismutase showed significant protection in the hippocampus (CA4), striatum, thalamus and the medial geniculate nucleus (MGN). Catalase showed significant protection in the striatum, hippocampus, thalamus, and MGN and the substantia nigra reticulata. Combination of the two resulted in additional protection in the cerebral cortex. Compared to the controls, there was little protection with a dose of 3 mg/kg of U78517F. There was significant protection with a dose of 10 mg/kg in the hippocampus (CA4), striatum, thalamus, medial geniculate nucleus and the substantia nigra reticulata. The significant protection noted with SOD, catalase or U78517F with repeated ischemia supports, the hypothesis that OFRs may play a role in neuronal damage in repeated cerebral ischemia.

Key Words

Ischemia repeated ischemia oxygen free radicals superoxide dismutase catalase U78517F 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pulsinelli, W. A., Brierly, J. B., and Plum, F. 1982. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498.Google Scholar
  2. 2.
    Buchan, A., and Pulsinelli, W. A. 1990. Hypothermia but not NMDA antagonist MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neuroscience 10:311–316.Google Scholar
  3. 3.
    Garcia, J. H., and Anderson, M. L. 1991. Circulatory disorders and their effects on the brain. In: Davis, R. L., Robertson, D. M., eds. Textbook of neuropathology, 2nd ed. Baltimore: Williams and Wilkins, 621–718.Google Scholar
  4. 4.
    Auer, R. N., and Siesjo, B. K. 1988. Biological differences between ischemia, hypoglycemia and seizures. Ann Neurol 24:699–707.Google Scholar
  5. 5.
    Araki, T., Kato, H., and Kogure, K. 1990. Neuronal damage and calcium accumulation following repeated brief cerebral ischemia in the gerbil. Brain Res 528:114–122.Google Scholar
  6. 6.
    Nakano, S., Kato, H., and Kogure, K. 1989. Neuronal damage in the rat hipocampus in a new model of repeated reversible transient cerebral ischemia. Brain Res 490:178–180.Google Scholar
  7. 7.
    Shuaib, A., Ijaz, S., Kalra, J., and Code, W. 1992. Repetitive transient forebrain ischemia in gerbils: Delayed neuronal damage in the substantia nigra reticulata. Brain Res 574:120–124.Google Scholar
  8. 8.
    Shuaib, A., Ijaz, S., Hasan, S., and Kalra, J. 1992. Gamma-vinyl GABA prevents hippocampal and substantia nigra reticulata damage in repetitive transient ischemia in gerbils. Brain Res 590:13–17.Google Scholar
  9. 9.
    Shuaib, A., Ijaz, S., Kalra, J., and Code, W. 1992. During repetitive forebrain ischemia, post-ischemic hypothermia protects neurons from damage. Can J Neurol Sci 19:428–432.Google Scholar
  10. 10.
    Vass, K., Tomida, S., Hossmann, K.-A., Nowak, T. S., and Klatzo, I. 1988. Microvascular disturbances and edema formation after repetitive ischemia of the gerbil brain. Acta Neuropath 75:288–294.Google Scholar
  11. 11.
    Pluta, R., Tomida, S., Ikeda, J., Nowak, T. S., and Klatzo, I. 1989. Cerebrovascular volume after repeated ischemic insults in gerbil: comparison with changes in CBF and brain edema. J Cereb Blood Flow Metab 9:163–170.Google Scholar
  12. 12.
    Nakata, N., Kato, H., Liu, Y., and Kogure, K. 1992. Effects of pretreatment with sublethal ischemia on the extracellular glutamate concentrations during secondary ischemia in the gerbil hippocampus evaluated with intracerebral microdialysis. Neurosci. Lett. 138:86–88.Google Scholar
  13. 13.
    Widmann, R., Weber, C., Bonnekoh, P., Schlenker, M., and Hossmann, K.-A. 1992. Neuronal damage after repeated 5 minutes of ischemia in the gerbil is preceded by prolonged impairment of protein metabolism. J. Cereb. Blood Flow Metab. 12:425–433.Google Scholar
  14. 14.
    Kato, H., Liu, Y., Araki, T., and Kogure, K. 1991. Temporal profile of the effects of pretreatment with brief cerebral ischemia on the neuronal damage following secondary ischemic insult in the gerbil: Cumulative damage and protective effects. Brain Res 553:238–242.Google Scholar
  15. 15.
    Hall, E. D., Pazara, K. E., Braughler, J. M., Linseman, K. L., and Jacobsen, E. J. 1990. Nonsteroidal lazaroid U78 517F in models of focal and global ischemia. Stroke 21 (suppl III):83–87.Google Scholar
  16. 16.
    Busto, R., Dietrich, W. D., Globus, M. Y. T., Valdes, I., Scheinberg, P., and Ginsberg, M. D. 1987. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J. Cereb. Blood Flow Metab. 7:729–738.Google Scholar
  17. 17.
    Gallyas, F., Wolff, J. R., Bottcher, H., and Zaborszky, L. 1980. A reliable method to localize axonal damage after axotomy. Stain Tech 55:291–297.Google Scholar
  18. 18.
    Gallyas, F., Wolff, J. R., Bottcher, H., and Zaborszky, L. 1980. A reliable and sensitive method to localize terminal degeneration and lysosomes in the central nervous system. Stain Tech. 55:299–306.Google Scholar
  19. 19.
    Loskota, W. J., Lomax, P., and Verity, M. A. 1974. A stereotaxic atlas of the Mongolian gerbil brain. Ann Arbor: Ann Arbor Publishers Inc.Google Scholar
  20. 20.
    Crain, B. J., Westerkam, W. D., Harrison, A. H., and Nadler, J. V. 1988. Selective neuronal death after transient forebrain ischemia in the Mongolian gerbil: a silver impregnation study. Neurosci 27:387–402.Google Scholar
  21. 21.
    Kirino, T. 1982. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69.Google Scholar
  22. 22.
    Grotta, J. C., Picone, C. M., Ostrow, P. T., and et al. 1990. CGS-19755, a competitive NMDA receptor antagonist, reduces calcium-calmodulin binding and improves outcome after global ischemia. Ann Neurol 27:612–619.Google Scholar
  23. 23.
    Hara, H., Kogure, K., Kato, H., Ozaki, A., and Sukamoto, T. 1991. Amelioration of brain damage after focal ischemia in the rat by a noval inhibitor of lipid peroxidation. Eur J Pharmacol 197:75–82.Google Scholar
  24. 24.
    Lin, B., Globus, M. Y.-T., Dietrich, W. D., Busto, R., Martinez, E., and Ginsberg, M. D. 1992. Differing neurochemical and morphological sequelae of global ischemia: Comparison of single-and multiple-insult paradigms. J. Neurochem. 59:2213–2223.Google Scholar
  25. 25.
    Overgaard, K., Sereghy, T., Boysen, G., Pedersen, H., Hoyer, S., and Diemer, N. H. 1992. A rat model of reproducible cerebral infarction using thrombotic blood clot emboli. J Cereb Blood Flow Metab 12:484–490.Google Scholar
  26. 26.
    Kitagawa, K., Matsumoto, M., Tagaya, M., and et al. 1990. Ischemic tolerance phenomenon found in the brain. Brain Res 528:21–24.Google Scholar
  27. 27.
    Braughler, J. M., and Hall, E. D. 1989. Central nervous trauma and stroke: Biochemical considerations for oxygen radical formation and lipid peroxidation. Free Radical Biology and Medicine 6:289–301.Google Scholar
  28. 28.
    Braughler, J. M., Hall, E. D., Jacobsen, E. J., McCall, J. M., and Means, E. D. 1989. The 21-aminosteroids: Potent inhibitors of lipid peroxidation for the treatment of central nervous system trauma and ischemia. Drugs of the Future 14:143–152.Google Scholar
  29. 29.
    Hall, E. D., and Braughler, J. M. 1989. Central nervous system trauma and stroke: II. Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Radical Biology and Medicine 6:303–313.Google Scholar
  30. 30.
    Sakamoto, A., Ohnishi, S. T., Ohmishi, T., and Ogawa, R. 1991. Relationship between free radical production and lipid peroxidation during ischemia-reperfusion injury in the rat brain. Brain Res 554:186–192.Google Scholar
  31. 31.
    Kitagawa, K., Matsumoto, M., Oda, T., and et al. 1990. Free radical generation during brief periods of cerebral ischemia may trigger delayed neuronal damage. Neurosci 35:551–558.Google Scholar
  32. 32.
    Yoshida, S., Abe, K., Busto, R., Watson, B. D., Kogure, K., and Ginsburg, M. D. 1982. Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res 245:307–316.Google Scholar
  33. 33.
    Uyama, O., Matsuyama, T., Michishita, H., Nakamura, H., and Siguta, M. 1992. Protective effects of human recombinant superoxide dismutase on transient ischemic injury of CA1 neurons in gerbils. Stroke 23:75–81.Google Scholar
  34. 34.
    Ban, M., Tonai, T., Kohno, T., and et al. 1989. A flavonoid inhibitor 5-lipoxygenase inhibits leukotrine production following ischemia in gerbil brain, Stroke 20:248–252.Google Scholar
  35. 35.
    Hara, H., Kato, H., and Kogure, K. 1990. Protective effects of a-tocopherol on ischemic neuronal damage in the gerbil hippocampus. Brain Res. 510:335–338.Google Scholar
  36. 36.
    Carney, J. M., and Floyd, R. A. 1991. Protection against oxidative damage to CNS by PBN and other spin-tapping agents: A noval series of nonlipid free radical scavengers. J Mol Neurosci 3:47–57.Google Scholar
  37. 37.
    Phillis, J. W., and Clough-Helfman, C. 1990. Protection from cerebral ischemic injury in gerbils with the spin trap agent N-tert-Butyl-a-phenylnitrone (PBN). Neurosci. Lett. 116:315–319.Google Scholar
  38. 38.
    Clemens, J. A., Ho, P. P. K., and Panetta, J. A. 1991. LY178002 reduces rat brain damage after transient global forebrain ischemia. Stroke 22:1048–1052.Google Scholar
  39. 39.
    Young, W., Wojak, J. C., and DeCrescito, V. 1988. 21-aminosteroid reduces ion shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia. Stroke 19:1013–1019.Google Scholar
  40. 40.
    Hall, E. D., Pazara, K. E., and Braughler, J. M. 1988. 21-aminosteroid lipid peroxidation inhibitor U74006F protects against cerebral ischemia in gerbils. Stroke 19:997–1002.Google Scholar
  41. 41.
    Hall, E. D., and Yonkers, P. A. 1988. Attenuation of postischemic hypoperfusion by the 21-aminosteroid U74006F. Stroke 19:340–344.Google Scholar
  42. 42.
    Natale, J. E., Schott, R. J., Hall, E. D., Braughler, J. M., and D'Alecy, L. G. 1988. Effect of aminosteroid U74006F after cardiopulmonary arrest in dogs. Stroke 19:1371–1378.Google Scholar
  43. 43.
    Beck, T., and Bielenberg, G. W. 1990. Failure of lipid peroxidation inhibitor U74006F to improve neurological outcome after transient forebrain ischemia in the rat. Brain Res. 532:336–338.Google Scholar
  44. 44.
    Xue, D., Slivka, A., and Buchan, A. M. 1992. Tirilazad reduces cortical infarction after transient but not permanent focal cerebral ischemia in rats. Stroke 23:894–899.Google Scholar
  45. 45.
    Burton, G. W., and Ingold, K. U. 1981. Autoxidation of biological molecules. I. The antioxidant activity of vitamin E and related chain breaking antioxidants in vitro. J Am Chem Soc 103:6472–6477.Google Scholar
  46. 46.
    Hall, E. D., Braughler, J. M., Yonkers, P. A., and et al. 1991. U78517F: A potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia. J Pharmacol Esp Theraputics 258:688–694.Google Scholar
  47. 47.
    Kato, H., Kogure, K., and Nakano, S. 1989. Neuronal damage following repeated brief ischemia in the gerbil. Brain Res 479:366–370.Google Scholar
  48. 48.
    Asano, T., Shigeno, T., Usui, M., and Hanamura, T. 1987. A novel concept on the pathogenetic mechanism underlying ischemic brain edema: Relevance of free radicals and eiconoids. Acta Neurochir Suppl 41:85–94.Google Scholar
  49. 49.
    Shuaib, A., Ijaz, S., and Mazagri, R. 1993. CGS-19755 is neuroprotective during repetitive ischemia: This effect is significantly enhanced when combined with hypothermia. Neurosci 56:915–921.Google Scholar
  50. 50.
    Wishart, T., Ijaz, S., and Shuaib, A. 1992. The neurobehavioral and morphological effects of CGS-19755, an NMDA receptor blocker in an animal model of ischemia. Soc Neurosci Abstr 18:1256.Google Scholar
  51. 51.
    Shuaib, A., Mazagri, R., and Ijaz, S. 1993. GABA agonist “Muscimol” is neuroprotective in repetitive transient forebrain ischemia in gerbils. Exp Neurol 123:284–288.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Debbie Truelove
    • 1
  • Ashfaq Shuaib
    • 1
  • Sadiq Ijaz
    • 1
  • Steve Richardson
    • 1
  • Jay Kalra
    • 2
  1. 1.Departments of Medicine (Neurology), Pharmacology and PathologyUniversity of SaskatchewanSaskattoonCanada
  2. 2.Saskatchewan Stroke Research Centre, College of MedicineUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations