Advertisement

Neurochemical Research

, Volume 9, Issue 1, pp 133–146 | Cite as

Regional studies of myelin proteins in human brain and spinal cord

  • John L. Trotter
  • Cindy L. Wegescheide
  • William F. Garvey
Original Articles

Abstract

The myelin specific proteins, myelin basic protein (MBP) and myelin proteolipid protein (PLP) were quantitated by radioimmunoassay (RIA) and the activity of the enzyme 2′3′-cyclic 3′ phosphohydrolase (CNP) measured, in 27 regions of normal brain and spinal cord. Varying regional concentrations for each protein and regional variations for protein ratios were noted, supporting the concept of a varying chemical composition for myelin throughout the central nervous system (CNS). Variation was also noted among myelin subfractions from a single region. Regions with special sensitivity to the multiple sclerosis process had relatively lower proportions of CNP in several, but not all cases.

Keywords

Spinal Cord Multiple Sclerosis Human Brain Regional Study Regional Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartman, B. K., Agrawal, H. C., Agrawal, D., andKalmbach, S. 1982. Development and maturation of central nervous system myelin: Comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes. Proc. Natl. Acad. Sci. 79:4218–4220.Google Scholar
  2. 2.
    Fujimoto, K., Roots, B. I., Burton, R. M., andAgrawal, H. C. 1976. Morphological and biochemical characterization of light and heavy myelin isolated from developing rat brain. Biochem. Biophys. Acta, 426:659–668.Google Scholar
  3. 3.
    Zgorzalewicz, B., Neuhoff, V., andWaehneldt, T. V. 1974. Rat myelin proteins. Compositional changes in various regions of the nervous system during ontogenetic development. Neurobiology, 4:265–276.Google Scholar
  4. 4.
    Zimmerman, A. W., Quarles, R. H., andWebster, H. deF., andMatthieu, J. M., andBrady, R. O. 1975. Characterization and protein analysis of myelin subfractions in rat brain: Developmental and regional comparisons. J. Neurochem. 25:749–757.Google Scholar
  5. 5.
    Hartman, B. K., Agrawal, H. C., Kalmbach, S., andShearer, W. T. 1979. A comparative study of the immunohistochemical localization of basic protein to myelin and oligodendrocytes in rat and chicken brain. J. Comp. Neurol. 188:273–290.Google Scholar
  6. 6.
    Mendel, J. R., andWhitaker, J. N. 1978. Immunocytochemical studies of myelin basic protein. J. Cell. Biol. 76:502–511.Google Scholar
  7. 7.
    Sternberger, N. H., Itoyama, Y., Kies, M. W., andWebster, H. deF. 1978. Myelin basic protein demonstrated immunocytochemically in oligodendroglia prior to myelin sheath formation. Proc. Natl. Acad. Sci. 75:2521–2524.Google Scholar
  8. 8.
    Fishman, M. A., Agrawal, H. C., Alexander, A., Golterman, J., Martenson, R. E., andMitchell, R. F. 1975. Biochemical maturation of human central nervous system myelin. J. Neurochem. 24:689–694.Google Scholar
  9. 9.
    Kurihara, T., andTsukada, Y. 1967. The regional and subcellular distribution of 2′3′-cyclic nucleotide 3′ phosphohydrolase in the central nervous system. J. Neurochem. 14:1167–1174.Google Scholar
  10. 10.
    Sprinkle, T. J., Zaruba, M. E., andMcKhann, G. M. 1978. Activity of 2′3′ cyclic nucleotide 3′ phosphodiesterase in regions of rat brain during development: Quantitative relationship to myelin basic protein. J. Neurochem. 30:309–314.Google Scholar
  11. 11.
    Toews, A. D., andHorrocks, L. A. 1976. Developmental and aging changes in protein concentration and 2′3′ cyclic nucleotide monophosphate phosphodiesterase activity in human cerebral white and gray matter and spinal cord. J. Neurochem. 27:545–550.Google Scholar
  12. 12.
    Poduslo, S. E. andNorton, W. T. 1972. Isolation and some chemical properties of oligodendroglia from calf brains. J. Neurochem. 19:727–736.Google Scholar
  13. 13.
    Agrawal, H. C., Hartman, B. K., Shearer, W. T., Kalmbach, S., andMargolis, F. 1977. Purification and immunohistochemical localization of rat brain myelin proteolipid protein. J. Neurochem. 28:495–508.Google Scholar
  14. 14.
    Trotter, J. L., Lieberman, L., Margolis, F. L., andAgrawal, H. C. 1981. Radioimmunoassay for central nervous system myelin-specific proteolipid protein. J. Neurochem. 36:1256–1262.Google Scholar
  15. 15.
    Einstein, E. R., Robertson, D. M., DiCaprio, J. M., andMoore, W. 1962. The isolation from bovine spinal cord of a homogeneous protein with encephalitogenic activity. J. Neurochem. 9:351–361.Google Scholar
  16. 16.
    Kies, M. W., Murphy, J. B., andAlvord, E. C. 1961. Studies of the encephalitogenic factor in guinea pig central nervous system, pages 197–204,in Folch, P. J. (ed.), Chemical Pathology of the Nervous System, Pergamon Press, Oxford.Google Scholar
  17. 17.
    Cohen, S. R., McKhann, G. M., andGuarnieri, M. 1975. A radioimmunoassay for myelin basic protein and its use for quantitative measurements. J. Neurochem. 25:371–376.Google Scholar
  18. 18.
    Palfreyman, J. W., Thomas, D. G. T., andRatcliffe, J. G. 1978. Radioimmunoassay of human myelin basic protein in tissue extract, cerebrospinal fluid and serum and its clinical application to patients with head injury. Clin. Chim. Acta. 82:259–270.Google Scholar
  19. 19.
    Schmid, G., Thomas, G., Hempel, K., andGruninger, W. 1974. Radioimmunological determination of myelin basic protein (MBP) and MBP-antibodies. Europ. Neurol. 12:173–185.Google Scholar
  20. 20.
    Agrawal, H. C., Trotter, J. L., Burton, R. M., andMitchell, R. F. 1974. Metabolic studies on myelin. Evidence for a precursor role of a myelin subfraction. Biochem. J. 140:99–109.Google Scholar
  21. 21.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurements with the Folin-phenol reagent. J. Biol. Chem. 193:265–225.Google Scholar
  22. 22.
    Kurihara, T., Nussbaum, J. L., andMandel, P. 1969. 2′3′ cyclic nucleotide 3′ phosphohydrolase in the brain of the “Jimpy” mouse, a mutant with deficient myelination. Brain. Res. 13:401–403.Google Scholar
  23. 23.
    Deibler, G. E., Martenson, R. E., andKies, M. W. 1972. Large scale preparation of myelin basic protein from central nervous system of several mammalian species. Prep. Biochem. 2:139–165.Google Scholar
  24. 24.
    Agrawal, H. C. 1974. Analysis of membrane proteins by sodium dodecyl-sulfate-polacrylamide gel electrophoresis, in Fundamentals of Lipid Chemistry. (Burton, R. M., and Guerra, F. C., eds.), pp. 511–543. Bio-Science Publications Division, Webster Groves, Missouri.Google Scholar
  25. 25.
    Prohaska, J. R., Clark, D. A., andWells, W. W. 1973. Improved rapidity and precision in the determination of brain 2′3′-cyclic nucleotide 3′ phosphydrolase. Anal. Biochem. 56:275–282.Google Scholar
  26. 26.
    Ansari, K. A., Rand, A., andLoch, J. A. 1978. Biochemical and immunological studies with human optic and olfactory tracts. J. Neuropath. Exp. Neurol. 37:756–767.Google Scholar
  27. 27.
    Mehl, E., andWolfgram, F. 1969. Myelin types with different protein components in the same species. J. Neurochem. 16:1091–1097.Google Scholar
  28. 28.
    Amaducci, L., Pazzagli, A., andPessina, G. 1962. The relation of proteolipids and phosphatido-peptides to tissue elements in the bovine nervous system. J. Neurochem. 9:509–518.Google Scholar
  29. 29.
    Marks, N., Grynbaum, A., andLajtha, A. 1976. The breakdown of myelin-bound proteins by intra- and extracellular proteases. Neurochem. Res. 1:93–111.Google Scholar
  30. 30.
    Smith, M. E. 1977. The role of proteolytic enzymes in demyelination in experimental allergic encephalomyelitis. Neurochem. Res. 2:233–246.Google Scholar
  31. 31.
    Fishman, M. A., Trotter, J. L., andAgrawal, H. C. 1977. Selective loss of myelin proteins during autolysis. Neurochem. Res. 2:247–257.Google Scholar
  32. 32.
    Sammeck, R., andBrady, R. O. 1972. Studies of the catabolism of myelin basic proteins of the rat in situ and in vitro. Brain Res. 42:441–453.Google Scholar
  33. 33.
    Matthieu, J. M., Koellreutter, B., andJoyet, M. L. 1977. Changes in CNS myelin proteins and glycoproteins after in situ autolysis. Brain Res. Bull. 2:15–21.Google Scholar
  34. 34.
    Ansari, K. A., Hendrikson, H., Sinha, A. A., andRand, A. T. 1975. Myelin basic protein in frozen bovine brain. A study of autolytic change in situ. J. Neurochem. 25:193–195.Google Scholar
  35. 35.
    Rand, A., Ansari, K. A., andLock, J. 1979. 2′3′-cyclic nucleotide 3′ phosphohydrolase activity of human white matter and time interval between death and autopsy. J. Neurochem. 32:627–628.Google Scholar
  36. 36.
    Waehneldt, T. V. 1975. Ontogenetic study of a myelin-derived fraction with 2′3′-cyclic nucleotide-3′-phosphohydrolase activity higher than that of myelin. Biochem. J. 151:435–437.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • John L. Trotter
    • 1
  • Cindy L. Wegescheide
    • 1
  • William F. Garvey
    • 1
  1. 1.Department of Neurology and Neurosurgery (Neurology)Washington University School of MedicineSt. Louis

Personalised recommendations