Advertisement

Neurochemical Research

, Volume 9, Issue 1, pp 121–132 | Cite as

Cyclic AMP-stimulated protein kinase activity in rabbit peripheral myelin

  • Vivian Zabrenetzky
  • Vivien Krygier-Brévart
  • Peter S. Spencer
Original Articles
  • 14 Downloads

Abstract

Cyclic AMP-sensitive protein kinase activity has been found in suspensions of purified rabbit peripheral myelin. The enzyme phosphorylated the P0, “Y”, X, P1, and P2 myelin proteins. Kinase activity, which was maximal at physiological pH, 2.5 mM Mg2+, and 2 νM cAMP, was stimulated three-fold over basal levels by cyclic AMP. Addition of calcium or EGTA had no effect on the enzyme activity in the presence or absence of cyclic AMP. Cyclic GMP also did not stimulated endogenous or exogenous protein phosphorylation. Theophylline, an inhibitor of 3′,5′-cyclic nucleotide phosphodiesterase activity, increased protein kinase activity in the presence of cyclic AMP. These data show that PNS myelin proteins can be phosphorylated in situ by a protein kinase system whose activity is stimulated selectively by cyclic AMP.

Keywords

Protein Kinase Theophylline Kinase Activity EGTA Phosphodiesterase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Walter, U., Lohmann, S. M., Sieghart, W., andGreengard, P. 1979. Identification of the cyclic AMP-dependent protein kinase responsible for endogenous phosphorylation of substrate proteins in synaptic membrane fractions from rat brain. J. Biol. Chem. 254:12235–12239.Google Scholar
  2. 2.
    Rubin, C. F., Erlichman, J., andRosen, O. M. 1972. Cyclic adenosine 3′,5′-monophosphate-dependent protein kinases of human erythrocyte membrane. J. Biol. Chem. 247:6135–6139.Google Scholar
  3. 3.
    Tao, M., Conway R., andCheeta, S. 1980. Purification and characterization of a membrane-bound protein kinase from human erythrocytes. J. Biol. Chem. 255:2563–2568.Google Scholar
  4. 4.
    Miyamoto, E. 1975. Protein kinases in myelin of rat brain: solubilization and characterization. J. Neurochem. 24:503–512.Google Scholar
  5. 5.
    Miyamoto, E., Miyazaki, K., Hirose, R., andKashiba, A. 1978. Multiple forms of protein kinases in myelin and microsomal fractions of bovine brain. J. Neurochem. 31:269–275.Google Scholar
  6. 6.
    Aguayo, A. J., Charron, L., andBray, G. M. 1976. Potential of Schwann cells from unmyelinated nerves to produce myelin: a quantitative ultrastructural and autoradiographic study. J. Neurocytol. 5:565–573.Google Scholar
  7. 7.
    Weinberg, H. J., andSpencer P. S. 1976. Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production. Brain Res. 113:363–378.Google Scholar
  8. 8.
    Politis, M. J., Ederle, K., andSpencer, P. S. 1982. Studies on the control of myelinogenesis. IV. Neuronal regulation of Schwann cell protein synthesis during axon regeneration and myelination. J. Neurosci. 2:1252–1266.Google Scholar
  9. 9.
    Spencer, P. S. andWeinberg, H. J. 1978. Axonal specification of Schwann cell expression and myelination,in Pages 389–405 (Waxman, S., (ed.), The Physiology and Pathobiology of Axons, Raven Press, New York.Google Scholar
  10. 10.
    Norton, W. T., andPoduslo, S. E. 1973. Myelination in rat brain: method of myelin isolation. J. Neurochem. 21:749–759.Google Scholar
  11. 11.
    Greenfield, S., Norton, W. T., andMorell, P. 1971. Quaking mouse: isolation and characterization of myelin proteins. J. Neurochem. 18:2119–2128.Google Scholar
  12. 12.
    Brown, M. J., Pleasure, D. E., andAsbury, A. K. 1976. Microdissection of peripheral nerve: collagen and lipid distribution with morphological correlation. J. Neurol. Sci. 29:361–369.Google Scholar
  13. 13.
    de Lange, R. J., Kemp, R. J., Riley, W. D., Cooper, R. A., andKrebs, E. G. 1968. Activation of skeletal muscle phosphorylase kinase by adenosine triphosphate and adenosine 3′,5′-monophosphate. J. Biol. Chem. 243:2200–2208.Google Scholar
  14. 14.
    Lowry, O. J., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin reagent. J. Biol. Chem. 193:265–275.Google Scholar
  15. 15.
    Greenfield, S., Brostoff, S., Eylar, E. H., andMorell, P. 1973. Protein composition of myelin of the peripheral nervous system. J. Neurochem. 20:1207–1217.Google Scholar
  16. 16.
    Laemmli, U. K. 1970. Analysis of T4 phage proteins by gel electrophoresis. Nature 227:680–684.Google Scholar
  17. 17.
    Inouye, M. 1971. Internal standards for molecular weight determinations of proteins by polyacrylamide gel electrophoresis. J. Biol. Chem. 246:4834–4838.Google Scholar
  18. 18.
    Butcher, R. W., andSutherland, E. W. 1962. Adenosine 3′, 5′-phosphate in biological materials. Pt. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′, 5′-phosphate in human urine. J. Biol. Chem. 237:1241–1250.Google Scholar
  19. 19.
    Ishaque, A., Roomi, M. W., Szymanska, I., Kowalski, S., andEylar, E. H. (1980) The P0 glycoprotein of peripheral nerve myelin. Can. J. Biochem. 58:913–921.Google Scholar
  20. 20.
    Cammer, W., Sirota, S. R., andNorton, W. T. 1980. The effect of reducing agents on the apparent molecular weight of the myelin P0 protein and the possible identity of the P0 and “Y” protein. J. Neurochem. 34:404–409.Google Scholar
  21. 21.
    Cammer, W., Brosnan C. F., Bloom, B. R., andNorton, W. T. 1981. Degradation of the P0, P1, and P2 proteins in peripheral nervous system myelin by plasmin: Implications regarding the role of macrophages in demyelinating diseases. J. Neurochem. 36:1506–1514.Google Scholar
  22. 22.
    Singh, M. andSpritz, N. 1976. Protein kinases associated with peripheral nerve myelin. I. Phosphorylation of endogenous myelin proteins and exogenous substrates. Biochem. Biophys. Acta 448:325–338.Google Scholar
  23. 23.
    Petrali, E. H., andSulakhe, P. V. 1979. Calcium ion-stimulated endogenous protein kinase-catalyzed phosphorylation of peripheral nerve myelin proteins. Canad. J. Physiol. Pharmacol. 57:1200–1204.Google Scholar
  24. 24.
    Sulakhe, P. V., Petrali, E. H., Thiessen, B. J., andDavis, E. R. (1980) Calcium ion-stimulated phosphorylation of myelin proteins. Biochem. J. 186:469–473.Google Scholar
  25. 25.
    Maeno, H., andGreengard, P. 1972. Phosphoprotein phosphatases from rat cerebral cortex. J. Biol. Chem. 247:3269–3279.Google Scholar
  26. 26.
    McNamara, J. O. andAppel, S. H. 1977. Myelin basic protein phosphatase activity in rat brain. J. Neurochem. 29:27–35.Google Scholar
  27. 27.
    Yourist, J. E., Ahmad, F., andBrady, A. H. 1978. Solubilization and partial characterization of a phosphoprotein phosphatase from human myelin. Biochem. Biophys. Acta 522:452–464.Google Scholar
  28. 28.
    Corbin, J. D., Keely, S. L., andPark, C. R. 1975. The distribution and dissociation of cyclic AMP-dependent protein kinase in adipose, cardiac and other tissues. J. Biol. Chem. 250:218–295.Google Scholar

Copyright information

© PLenum Publishing Corporation 1984

Authors and Affiliations

  • Vivian Zabrenetzky
    • 1
  • Vivien Krygier-Brévart
    • 1
  • Peter S. Spencer
    • 1
  1. 1.Institute of Neurotoxicology Departments of Neuroscience and Pathology Rose F. Kennedy Center for Research in Mental Retardation and Human DevelopmentAlbert Einstein College of MedicineBronx

Personalised recommendations