Skip to main content
Log in

Neurochemical, pharmacological, and developmental studies on cerebellar receptors for dicarboxylic amino acids

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Specific binding ofl-[3H]glutamate ([3H]Glu) andl-[3H]asparate ([3H]Asp) to cerebellar membranes represented a time-, temperature- pH- and protein-dependent interaction which was both saturable and reversible. Binding sites for both radioligands appeared maximally enriched in synaptosomal fractions isolated by gradient centrifugation. Kinetically derived dissociation constant (K off/K on=K d) for [3H]Glu binding to this fraction indicated high-affinity (443 nM). Competition experiments employing analogs of excitatory amino acids, including new antagonists, helped identify binding sites for [3H]Glu and [3H]Asp as receptors with differential pharmacological, specificities. Membrane freezing reduced numbers of both receptor types, but binding activity could be recovered partially by incubation at 37°C. Glu receptors exhibited a pronounced deleterious sensitivity to thiol modifying reagents andl-Glu (50–1000 μM) provided protection, against these compounds during co-incubation with cerebellar membranes. It is suggested that cold storage may induce partially reversible receptor inactivation by promoting sulfhydryl group/bond modification. Rat cerebellar glutamatergic function (endogenous Glu content, Glu uptake and receptor sites) exhibited an apparent ontogenetic peak between days 8–12 postpartum with a plateauing profile from day 30 to adulthood. The accelerated development (days 8–12) coincides with the first demonstrable Glu release and kainic acid neurotoxicity, as described previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watkins, J. C., andEvans, R. H. 1981. Excitory amino acid transmitters. Ann. Rev. Pharmacol. Toxicol. 21:165–204.

    Google Scholar 

  2. Evans, R. H., andWatkins, J. C. 1981. Pharmacological antagonists of excitant amino acid action. Life Sci. 28:1303–1308.

    Google Scholar 

  3. Roberts, P. J., andSharif, N. A. 1981. Radioreceptor binding studies with glutamate and aspartate. Advan. Biochem. Psychopharmacol. 27:295–305.

    Google Scholar 

  4. Roberts, P. J. 1981. Binding studies for the investigation of receptors forl-glutamate and other excitatory amino acids. Pages 35–54,in Roberts, P. J., Storm-Mathisen, J., andJohnston, G. R. (eds.), Glutamate: Transmitter in the central nervous system, Wiley, Chichester, England.

    Google Scholar 

  5. Sharif, N. A. 1983. Excitatory amino acid receptors. Pages 239–259,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 6, Chapter 9, Plenum Press, New York.

    Google Scholar 

  6. Sharif, N. A., andRoberts, P. J. 1980. Problems associated with binding ofl-glutamic acid to synaptic membranes: methodological aspects. J. Neurochem. 34:779–784.

    Google Scholar 

  7. Foster, A. C., andRoberts, P. J. 1978. High-affinityl-[3H]glutamate binding to postsynaptic receptor sites on rat cerebellar synaptic membranes. J. Neurochem. 31:1467–1477.

    Google Scholar 

  8. Honore, T., Lauridsen, J., andKrogsgaard-Larsen, P 1981. Ibotenic acid analogues as inhibitors of [3H]glutamic acid binding to cerebellar membranes. J. Neurochem. 36:1302–1304.

    Google Scholar 

  9. Werling, L. L., andNadler, J. V. 1982. Complex binding ofl-[3H]glutamate to hippocampal synaptic membranes in the absence of sodium. J. Neurochem. 38:1050–1062.

    Google Scholar 

  10. Hirsch, J. D., andMargolis, F. L. 1979.l-[3H]carnosine binding in the olfactory bulb. II. Biochemical and biological studies. Brain Res. 174:81–94.

    Google Scholar 

  11. Baudry, M., Oliver, M., Creager, R., Wieraszko, A., andLynch, G. 1980. Increase in glutamate receptors following repetitive electrical stimulation in hippocampal slices. Life Sci. 27:325–330.

    Google Scholar 

  12. Savage, D. D., Werling, L. L., Nadler, J. V., andMcMara., J. O. 1982. Selective increase inl-[3H]glutamate binding to a quisqualate-sensitive site on hippocampal synaptic membranes after angular bundle kindling. Eur. J. Pharmacol. 85:225–256.

    Google Scholar 

  13. Baudry, M., andLynch, G. 1980. Regulation of glutamate receptors by cations. Nature 282:748–750.

    Google Scholar 

  14. Fagg, G. E., Foster, A. C., Mena, E. E., andCotman, W. W. 1982. Chloride and Calcium ions reveal a pharmacologically distinct population ofl-glutamate binding sites in synaptic membranes: correspondence between biochemical and electrophysiological data. J. Neurosci. 2:958–965.

    Google Scholar 

  15. Krug, M., Brodeman, R. andOtt, T 1982. Blockade of long-term potentiation in the dentate gyrus of freely moving rats by the glutamic acid antagonist GDEE. Brain Res. 249:57–62.

    Google Scholar 

  16. Bizere, K., Thompson, H., andCoyle, J. T. 1980. Characterisation of specific, highaffinity binding sites forl-[3H]glutamic acid in rat brain. Brain Res. 183:421–433.

    Google Scholar 

  17. Vincent, S. R., andMcGeer, E. G 1980. A comparison of sodium-dependent glutamate binding with high-affinity glutamate uptake in rat striatum. Brain Res. 184:99–108.

    Google Scholar 

  18. Foster, A. C., Mena, E. E., Fagg, G. E., andCotman, C. W. 1981. Glutamate and aspartate binding sites are enriched in synaptic junctions isolated from rat brain. J. Neurosci. 1:620–625.

    Google Scholar 

  19. Prasad, K. N., Nayak, M., Prasad, E. J., Cummings S., andPattisapu, K. 1980. Modification of glutamate effects on neuroblastoma cells in culture by heavy metals. Life Sci. 27:2251–2259.

    Google Scholar 

  20. Filbin, M. T., Lunt, G. G., andDonnellan, J. F. 1980. Glutamate receptor biochemistry. Pages 153–160,in Satelle, D. B. (ed.) Receptors for neurotransmitters, hormones and phermones, Elsevier Press.

  21. Viveros, N., andOrrego, F. 1982. A search in rat brain cortex synaptic vesicles for endogenous ligands for kainic acid receptors. Brain Res. 236:492–496.

    Google Scholar 

  22. Iwata, H., Yamagami, S., andBaba, A. 1982. Cysteine sulfinic acid in the central nervous system: specific binding of [35S]cysteic acid to cortical synaptic membranes—an investigation of possible binding sites for cysteine sulfinic acid. J. Neurochem. 38:1275–1279.

    Google Scholar 

  23. Recasens, M., Varga, V., Nanopoulos, D., Saadoun, F., Vincendon, G., andBenavides, J. 1982. Evidence for cysteine sulfinate as a neurotransmitter. Brain Res. 239:153–173.

    Google Scholar 

  24. Tamir, H., andLiu, K. P. 1982. On the nature of the interaction between serotonin binding protein: effect of nucleotides, ions, and sulfhydryl reagents. J. Neurochem. 38:135–141.

    Google Scholar 

  25. Chang, L. R., Barnard, E. A., Lo, M. M. S., andDolly, J. O. 1981. Molecular size of benzodiazepine receptors and the interacting GABA receptors in the membrane are identical. FEBS. Lett. 126:309–312.

    Google Scholar 

  26. Graham, L. T., andAprison, M. R. 1966. Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Analyt. Biochem. 15:487–497.

    Google Scholar 

  27. Lowry, D. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  28. Butcher, S. P., Roberts, P. J., andCollins, J. F. 1983.d, l-3H-2-amino-4-phosphonobutyrate binding tol-glutamate-sensitive sites of rat brain synaptic membranes. IRCS Med. Sci. 11:42–43.

    Google Scholar 

  29. Sharif, N. A., andRoberts, P. J. 1981. Regulation of cerebellar [3H]glutamate binding—influence of guanine nucleotides, Na+ and other factors. Biochem. Pharmacol. 30:3019–3022.

    Google Scholar 

  30. Foster, G. A., Roberts, P. J., Rowlands, G. J., andSharif, N. A. 1981. Ontogeny of neurochemical markers for glutamate neurons in cerebellum: implications for development of kainate toxicity. Brit. J. Pharm. 73:235P (abstract).

    Google Scholar 

  31. McGeer, P. L., andSingh, K. 1978. Kainate-induced degeneration of neostriatal neurons: dependency on multiple corticostriatal tract. Brain Res. 139:381–383.

    Google Scholar 

  32. Sharif, N. A. 1983. Synaptic receptors for neuroactive amino acids. Inter. Rev. Neurobiol. (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, N.A., Roberts, P.J. Neurochemical, pharmacological, and developmental studies on cerebellar receptors for dicarboxylic amino acids. Neurochem Res 9, 81–101 (1984). https://doi.org/10.1007/BF00967661

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967661

Keywords

Navigation