Siberian Mathematical Journal

, Volume 16, Issue 3, pp 368–376 | Cite as

Integral operators and representation of completely linear functionals on spaces with mixed norms

  • A. V. Bukhvalov


Integral Operator Linear Functional Mixed Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. Z. Vulikh, Introduction to Theory of Partially Ordered Spaces [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  2. 2.
    A. V. Bukhvalov, “Spaces of vector-functions and tensor products,” Vestn. Leningr. Un-ta, Ser. Matem., Mekh., Astron.,4, No. 19, 5–12 (1973).Google Scholar
  3. 4.
    B. Z. Vulikh and G. Ya. Lozanovskii, “Representation of completely linear and regular functionals in partially ordered spaces,” Matem. Sb.,84, (126), No. 3, 331–352 (1971).Google Scholar
  4. 5.
    T. Mori, I. Amemiya, and H. Nakano, “On the reflexivity of semicontinuous norms,” Proc. Jap. Acad.,31, 684–685 (1955).Google Scholar
  5. 6.
    M. A. Krasnosel'skii and Ya. B. Rumitskii, Convex Functions and Orlicz Spaces [in Russian], Fitmatgiz, Moscow (1958).Google Scholar
  6. 7.
    A. V. Bukhvalov, “Analytic representation of operators with abstract norm,” (note), Izv. Vyssh. Ucheb. Zaved., Matem., No. 10, 33 (1972).Google Scholar
  7. 8.
    A. V. Bukhvalov, “Analytic representation of operators with abstract norm,” Dokl. AN SSSR,208, No. 5, 1012–1015 (1973).Google Scholar
  8. 9.
    M. A. Krasnosel'skii, P. P. Zabreiko, E. I. Pustyl'nik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions [in Russian], Fizmatgiz, Moscow (1966).Google Scholar
  9. 10.
    Yu. I. Gribanov, “Measurability of a function,” Izv. Vyssh. Ucheb. Zaved., Matem.,3, 22–25 (1970).Google Scholar
  10. 11.
    Yu. I. Gribanov, “Linear operators in complete function spaces,” Pt. 3, Izv. Vyssh. Ucheb. Zaved., Matem.,9, 37–44 (1970).Google Scholar
  11. 12.
    H. Dunford and J. T. Schwarz, Linear Operators. General Theory [Russian translation], Izd-vo Inostr. Lit., Moscow (1962).Google Scholar
  12. 13.
    N. Dunford and B. T. Pettis, “Linear operators on summable functions,” Trans. Amer. Math. Soc.,47, No. 3, 323–392 (1940).Google Scholar
  13. 14.
    V. L. Levin, “Tensor products and functors in categories of Banach spaces definable by KB-lineals,” Tr. Mosk. Mat. Ob-va,20, 43–82 (1969).Google Scholar
  14. 15.
    A. Grothendieck, Produits Tensoriels Topologiques et Espaces Nucleaires, Providence (1955).Google Scholar
  15. 16.
    V. B. Korotkov, “Integral operators with kernels satisfying the Karleman and Akhiezer condition,” Pt. 1, Sib. Mat. Zh.,12, No. 5, 1041–1055 (1971).Google Scholar
  16. 17.
    L. V. Kantorovich, B. Z. Vulikh, and A. G. Pinsker, Functional Analysis in Partially Ordered Spaces, Gostekhizdat, Moscow-Leningrad (1950).Google Scholar
  17. 18.
    J. J. Uhl, “On a class of operators on Orlicz spaces,” Stud. Math.,40, No. 1, 17–22 (1971).Google Scholar
  18. 19.
    A. C. Zaanen, “Banach function spaces,” Proc. Internat. Symp. Linear Spaces, Jerusalem (1960). 448–452 (1961).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. V. Bukhvalov

There are no affiliations available

Personalised recommendations