Siberian Mathematical Journal

, Volume 16, Issue 2, pp 268–274 | Cite as

Divergence sets of integrals of potential type with densities from Lp

  • S. P. Preobrazhenskii


Potential Type 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. C. Evans, “Potentials and positively infinite singularities of harmonic functions,” Monatsh. Math.,43, 419–424 (1936).Google Scholar
  2. 2.
    J. Deny, “Sur les infinis d'un potentiel,” Compt. Rend. Acad. Sci.,224, 524–525 (1947).Google Scholar
  3. 3.
    J. Du Plessis, “A theorem about fractional integrals,” Proc. Amer. Math. Soc.,3, No. 6, 892–898 (1952).Google Scholar
  4. 4.
    J. Deny, “Sur la convergence de certaines intégrales de la théorie du potentiel,” Arch. Math.,5, Nos. 4–6, 367–370 (1954).Google Scholar
  5. 5.
    N. Du Plessis, “Some theorems about the Reisz fractional integral,” Trans. Amer. Math. Soc.,80, No. 1, 124–134 (1955).Google Scholar
  6. 6.
    G. Choquet, “Sur les Gδ de capacité nulle,” Ann. Inst. Fourier,9, 103–110 (1959).Google Scholar
  7. 7.
    B. Fuglede, “On generalized potentials of functions in the Lebesgue class,” Math. Scand.,8, 287–304 (1960).Google Scholar
  8. 8.
    N. S. Landkof, Fundamentals of Potential Theory [in Russian], Nauka, Moscow (1966).Google Scholar
  9. 9.
    Yu. G. Reshetnyak, “On the notion of capacity in the theory of functions with generalized derivatives,” Sib. Matem. Zb.,10, No. 5, 1109–1138 (1969).Google Scholar
  10. 10.
    N. Meyers, “A theory of capacities for potentials of functions in Lebesgue classes,” Math. Scand.,26, No. 2, 255–292 (1970).Google Scholar
  11. 11.
    B. W. Martin, “On α-potentials of functions in Lp classes,” J. London Math. Soc.,2, 699–708 (1970).Google Scholar
  12. 12.
    S. P. Preobrazhenskii, “On divergence sets of integrals of potential type with densities from Lp,” Zap. Nauchn. Sem. Leningrad Otd. Mat. Inst. Akad. Nauk SSSR,22, 196–198 (1971).Google Scholar
  13. 13.
    H. Wallin, “Riesz potentials, k,p-capacity, and p-modules,” Michigan Math. J.,18, No. 2, 257–263 (1971).Google Scholar
  14. 14.
    J. Deny, “Les potentiels d'énergie finie,” Acta Math.,82, 107–183 (1950).Google Scholar
  15. 15.
    V. G. Maz'ya and V. P. Khavin, “A nonlinear analog of the Newton potential and metric properties of (p,l)-capacity,” Dokl. Akad. Nauk SSSR,194, No. 4, 770–773 (1970).Google Scholar
  16. 16.
    V. G. Maz'ya and V. P. Khavin, “Nonlinear potential theory,” Usp. Matem. Nauk,27, No. 6, 67–138 (1972).Google Scholar
  17. 17.
    D. R. Adams and N. G. Meyers, “Thinness and Wiener criteria for nonlinear potentials,” Indiana Univ. Math. J.,22, No. 2, 139–158 (1972).Google Scholar
  18. 18.
    D. Adams and N. Meyers, “Bessel potentials. Inclusion relations among classes of exceptional sets,” Indiana Univ. Math. J.,22, No. 9, 873–905 (1973).Google Scholar
  19. 19.
    G. G. Hardy, D. E. Littlewood, and G. Polya, Inequalities [Russian translation], IL, Moscow (1948).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • S. P. Preobrazhenskii

There are no affiliations available

Personalised recommendations