Siberian Mathematical Journal

, Volume 16, Issue 2, pp 232–241 | Cite as

The structure of the indicator of an entire function of finite order and normal type

  • L. S. Maergoiz


Entire Function Finite Order Normal Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. Ya. Levin, The Distribution of Roots of Entire Functions [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  2. 2.
    M. M. Dzhrbashyan, Integral Transforms and Representations in the Complex Domain [in Russian], Nauka, Moscow (1966).Google Scholar
  3. 3.
    A. F. Leont'ev, “Representation of functions by generalized Dirichlet series,” Usp. Mat. Nauk,24, No. 2 (146), 97–164 (1969).Google Scholar
  4. 4.
    L. S. Maergoiz, “Plane ρ-convex sets and some of their applications”, in: Holomorphic Functions of Several Complex Variables [in Russian], Krasnoyarsk (1972), pp. 75–91.Google Scholar
  5. 5.
    V. Koppenfels and F. Stahlman, Practical Conformal Mapping [Russian translation], IL (1963).Google Scholar
  6. 6.
    V. Bernstein, “Sulla proprietà caratteristiche delle indicatrici di crescenza delle transcendenti intere d'ordine finito,” Mem. R. Accad. d'Italia,7, 131–189 (1936).Google Scholar
  7. 7.
    C. O. Kiselman, “Existence of entire functions of one variable with prescribed indicator,” Arkiv Mat.,7, No. 35, 505–508 (1968).Google Scholar
  8. 8.
    M. A. Krasnosel'skii, Vector Fields in the Plane [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  9. 9.
    N. Bourbaki, General Topology (Fundamental structures) [Russian translation], Nauka, Moscow (1968).Google Scholar
  10. 10.
    G. Springer, Introduction to the Theory of Riemann Surfaces [Russian translation], IL, Moscow (1960).Google Scholar
  11. 11.
    R. Rockefeller Convex Analysis [Russian translation], Mir, Moscow (1973).Google Scholar
  12. 12.
    N. V. Govorov, “Riemann's boundary-value problem with infinite index and order smaller than 1/2,” in: The Theory of Functions and Functional Analysis and Their Applications [in Russian], No. 6, Khar'kov (1968), pp. 151–176.Google Scholar
  13. 13.
    S. S. Kutateladze and A. M. Rubinov, “Minkowski duality and its applications,” Usp. Mat. Nauk,27, No. 3 (165), 127–176 (1972).Google Scholar
  14. 14.
    V. A. Sharafutdinov, “Convex sets and Riemann manifolds,” Sib. Matem. Zh.,14, No. 5, 1152–1155 (1973).Google Scholar
  15. 15.
    L. Hörmander, Introduction to the Theory of Functions of Several Complex Variables [Russian translation], Mir, Moscow (1968).Google Scholar
  16. 16.
    R. Narasimkhan, Analysis on Real and Complex Manifolds [Russian translation], Mir, Moscow (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • L. S. Maergoiz

There are no affiliations available

Personalised recommendations