Skip to main content

Advertisement

Log in

Age-dependent loss of NMDA receptors in hippocampus, striatum, and frontal cortex of the rat: Prevention by acetyl-l-carnitine

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acute i.p. administration of Acetyl-L-Carnitine (ALCAR), a component of several biological systems, has been found to modify spontaneous and evoked electrocortical activity in young rats, and, in the old rats, to improve learning ability and to increase the number of NMDA receptors in the whole brain. The present study was aimed at ascertaining the effect of chronic treatment with ALCAR added to drinking water on age-related changes in the different brain areas of rats. In twenty-four-month-old rats, ALCAR treatment for six months significantly impeded the decline in the number of NMDA receptors within the hippocampus, the frontal cortex and the striatum compared to the adult animal. This finding thus confirms the previously reported positive effect of ALCAR on the brain NMDA receptor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fritz, I. B. 1963. Carnitine and its role in fatty acid metabolism. Adv. Lipid Res. 1:285–344.

    Google Scholar 

  2. Angelucci, L., Patacchioli, F. R., Taglialatela, G., Maccari, S., Ramacci, M. T., and Ghirardi, O. 1986. Brain glucocorticoid receptor and adrenocortical activity are sensitive markers of senescence-retarding treatments in the rat. Pages 343–373,in Biggio, G., Spano, P. F., Toffano, G., Gessa, G. L. (eds.), Modulation of Central and Peripheral transmitter function, Liviana Press, Padova.

    Google Scholar 

  3. Angelucci, L., Ramacci, M. T., Taglialatela, G., Huselbosh, C., Morgan, B., Werrbach-Perez, K., and Perez-Polo, J. R. 1988. Nerve growth factor binding in aged rat central nervous system: effect of Acetyl-l-carnitine. J. Neurosci. Res. 20:491–496.

    PubMed  Google Scholar 

  4. Ghirardi, O., Milano, S., Ramacci, M. T., and Angelucci, L. 1988. Effect of Acetyl-l-carnitine chronic treatment on discrimination models in aged rats. Physiol. Behav. 44:769–773.

    PubMed  Google Scholar 

  5. Castorina, M., Ambrosini, A. M., Giuliani, A., Pacifici, L., Ramacci, M. T., and Angelucci, L., 1993. A Cluster analysis study of Acetyl-l-carnitine on NMDA receptors in aging. Exp. Geront. 28/6:537–548.

    Google Scholar 

  6. Peterson, C., and Cotman, C. W. 1989. Strain-dependent decrease in glutamate binding to the N-methyl-d-aspartic acid receptor during aging. Neurosci. Lett. 104:309–313.

    PubMed  Google Scholar 

  7. Bonhaus, D. W., Perry, W. B., and Mc Namara, J. O. 1990. Decrease density, but not number, of N-methyl-d-aspartate, glycine and phencyclidine binding sites in hippocampus of senescent rats. Brain Res. 532:82–86.

    PubMed  Google Scholar 

  8. Tamaru, M., Yoneda, Y., Ogita, K., Shimiru, J., and Nagata, Y. 1991. Age-related decrease of the N-methyl-d-aspartate receptor complex in the rat cerebral cortex and hippocampus. Brain Res. 542:83–90.

    PubMed  Google Scholar 

  9. Morris, R. G. M., Anderson, E., Lynch, G. S., and Baudry, M. 1986. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist AP5. Nature 319:774–776.

    PubMed  Google Scholar 

  10. Collingridge, G. L., and Bliss, T. V. P. 1987. NMDA receptor—Their role in long-term potentiation. Trends Neurosci. 10:288–293.

    Google Scholar 

  11. Danysz, W., Wroblewski, J. T., and Costa. E. 1988. Learning impairment in rats by N-methyl-d-aspartate receptor antagonists. Neuropharm. 27:653–656.

    Google Scholar 

  12. Landfield, P. W., Mc Gaugh, J. L. and Lynch, G. 1978. Impaired synaptic potentiation processes in the hippocampus of aged, memory-deficient rats. Brain Res. 150:85–101.

    PubMed  Google Scholar 

  13. Greenamyre, J. T., Penney, J. B., Young, A. B., D'Amato, C. J., Hicks, S. P., and Shoulson, I. 1985. Alterations inl-glutamate binding in Alzheimer's and Huntington's disease. Science 227:1496–1499.

    PubMed  Google Scholar 

  14. Greenamyre, J. T., Penney, J. B., D'Amato, C. J., and Young, A. B. 1987. Dementia of the Alzheimer's type: changes in hippocampal L-[3H] glutamate binding. J. Neurochem. 48:543–551.

    PubMed  Google Scholar 

  15. Murphy, D. E., Hutchinson, A. J., Hunt, S. D., Williams, M., and Sillis, M. A. 1988. Characterization of the binding of [3H]CGS19755: a novel N-methyl-d-aspartate antagonist with nanomolar affinity in rat brain. Br. J. Pharmacol. 95:932–938.

    PubMed  Google Scholar 

  16. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    PubMed  Google Scholar 

  17. Monaghan, D. T., Bridges, R. J., and Cotman, C. W. 1989. The excitatory aminoacid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29:365–402.

    PubMed  Google Scholar 

  18. Wroblewski, J. T., and Danysz, W. 1989. Modulation of glutamate receptors: molecular mechanisms and functional implications. Annu. Rev. Pharmacol. Toxicol. 29:441–474.

    PubMed  Google Scholar 

  19. Morris, R. G. M., Garrud, P., Rawlins, J. P. N., and O'Keefe, J. 1982. Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683.

    PubMed  Google Scholar 

  20. Olton, D. S., Walker, J. A., and Gage, F. H. 1978. Hippocampal connections and spatial discrimination. Brain Res. 139:295–308.

    PubMed  Google Scholar 

  21. Cotman, C. W., and Monaghan, D. T. 1988. Multiple excitatory aminoacid receptor regulation of intracellular Ca2+ implication for aging and Alzheimer's disease. Ann. N.Y. Acad. Sci. 552:138–148.

    Google Scholar 

  22. Monaghan, D. T., Anderson, K. J., Peterson, C., and Cotman, C. W. 1988. Age-dependent loss of NMDA receptors in rodent brain. Soc. Neurosci. Abstr., 14:486.

    Google Scholar 

  23. Mc Geer, P. L., Mc Geer, E. G., Sherer, U., and Singh, K. 1977. A glutamatergic corticostriatal path? Brain Res. 128:369–373.

    PubMed  Google Scholar 

  24. Fonnum, F., Storm-Mathisen, Y., and Divec, I. 1981. Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neurosci. 6:863–875.

    Google Scholar 

  25. Kim, S., Hassler, R., Hang, P., and Paik, K. S. 1987. Effect of frontal cortex oblation on striatal glutamic acid levels in rat. Brain Res. 132:370–374.

    Google Scholar 

  26. Schmidt, W. J., Bubser, M. 1989. Anticataleptic effects of the N-methyl-d-aspartate antagonist MK-801 in rats. Pharmacol. Biochem. Behav. 32:621–625.

    PubMed  Google Scholar 

  27. Elliot, P. J., Close, S. P., Walsh, D. M., Hayes, A. G., and Mariot, A. S. 1990. Neuroleptic-induced catalepsy as a model of Parkinson's disease. II. Effect of glutamate antagonists. J. Neural. Transm. (P.-D. Sect.) 2:91.

    Google Scholar 

  28. Metha, A. K., Ticku, M. K., 1990. Role of N-methyl-d-aspartate (NMDA) receptors in experimental catalepsy in rats. Life Sci. 46:37–44.

    PubMed  Google Scholar 

  29. Carlsson, A. 1988. The current status of the dopamine hypothesis of schizophrenia. Neuropsycopharmacol. 1:179–184.

    Google Scholar 

  30. Glinisman, Y., Bondareff, W., and Dodge, J. T. 1978. Dendritic atrophy in the dentate gyrus of the senescent rat. Am. J. Anat. 153:537–543.

    PubMed  Google Scholar 

  31. Bondareff, W. 1979. Synaptic atrophy in the senescent hippocampus. Mech. Ageing Dev. 9:163–171.

    PubMed  Google Scholar 

  32. Brizzee, K. R., and Ordy, J. M. 1979. Age pigments, cell loss and hippocampal function. Mech. Ageing Dev. 9:143–162.

    PubMed  Google Scholar 

  33. Mc Neill, T. H., Koek, L., Brown, S., and Rafols, J. 1985. Agecorrelated dendritic changes in medium spiny striatal neurons in the C57BL/6NNIA mouse. Soc. Neurosci. Abstr. 11:896.

    Google Scholar 

  34. Benzi, G., Villa, R. F., Dossena, M., Vercesi, L., Gorini, A., and Pastoris, O. 1984. Cerebral endogenous substrate utilization during the recovery period after profound hypoglycemia. J. Neurosci. Res. 11:437–450.

    PubMed  Google Scholar 

  35. Curti, D., Dagani, F., Galmozzi, M. R., and Marzatico, F. 1989. Effects of aging and Acetyl-l-carnitine on energetic and cholinergic metabolism in the rat brain. Mech. Ageing Dev. 47:39–45.

    PubMed  Google Scholar 

  36. Aureli, T., Miccheli, A., Ricciolini, O., and Di Cocco, M. E., Ramacci, M. T., Angelucci, L., Ghirardi, O., and Conti, F. 1990. Aging brain: effect of Acetyl-l-carnitine treatment on rat brain energy and phospholipid metabolism. A study by 31-P and 1-H NMR spectroscopy. Brain Res. 526:108–112.

    PubMed  Google Scholar 

  37. Angelucci, L., Patacchioli, F. R., Scaccianoce, S., Di Sciullo, A., Catalani, A., Taglialatela, G., and Ramacci, M. T. 1987. Hypothalamo-pituitary-adrenocortical function and process of brain aging. Pages 293–304,in Nerozzi, D., Goodwin, F., Costa, E. (eds.), Hypothalamic Disfunction in Neuropsychiatric Disorders, Raven Press, New York.

    Google Scholar 

  38. Ramacci, M. T., De Rossi, M., Lucreziotti, M. R., Mione, M. C., and Amenta, F. 1988. Effect of long-term treatment with Acetyl-l-carnitine on structural changes of ageing rat brain. Drugs Exptl. Clin. Res. XIV(9):593–601.

    Google Scholar 

  39. Napoleone, P., Ferrante, F., Ghirardi, O., and Ramacci, M. T., Amenta, F. 1990. Age-dependent nerve cell loss in the brain of Sprague-Dawley rats: effect of long-term Acetyl-l-carnitine treatment. Arch. Gerontol. Geriatr. 10:173–185.

    PubMed  Google Scholar 

  40. Patacchioli, F. R., Amenta, F., Ramacci, M. T., Taglialatela, G., Maccari, S., Angelucci, L., 1989. Acetyl-l-carnitine reduces the age-dependent loss of glucocorticoid receptors in the rat hippocampus: an autoradiography study. J. Neurosci. Res. 23:462–466.

    PubMed  Google Scholar 

  41. Angelucci, L., Ramacci, M. T., Alivernini, L., Scrocco, M. G., Bacchi, S., and Imperato, A. 1990. Muscarinic antagonists on acetylcholine release from the hippocampus of awake rats: a probe of aged brain cholinergic function and of its amelioration by Acetyl-l-carnitine. Society of Neurosci. Abs. 16(1):28.

    Google Scholar 

  42. Sershen, H., Hashim, A., and Lajtha, A. 1991. Effect of Acetyl-l-carnitine on dopamine D1 and D2 receptors. J. Neurosci. Res. 30:555–559.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castorina, M., Ambrosini, A.M., Pacifici, L. et al. Age-dependent loss of NMDA receptors in hippocampus, striatum, and frontal cortex of the rat: Prevention by acetyl-l-carnitine. Neurochem Res 19, 795–798 (1994). https://doi.org/10.1007/BF00967446

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967446

Key Words

Navigation