Siberian Mathematical Journal

, Volume 12, Issue 4, pp 607–614 | Cite as

On finite p-groups, each of whose proper subgroups has a metacyclic commutant

  • A. D. Ustyuzhaninov


Proper Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. Blackburn, “On prime-power groups with two generators,” Proc. Cambridge Philos. Soc.,54, No. 3 (1958).Google Scholar
  2. 2.
    V. A. Sheriev, “Finite 2-groups with complementary noninvariant subgroups,” Sibirsk. Matem. Zh.,8, No. 1, 215–232 (1967).Google Scholar
  3. 3.
    M. Hall, Theory of Groups [Russian translation], IL, Moscow (1962).Google Scholar
  4. 4.
    N. Blackburn, “On a special class of p-groups,” Acta Math.,100, Nos. 1–2, 45–92 (1958).Google Scholar
  5. 5.
    Ph. Hall, “A contribution to theory of groups of prime-power order,” Proc. London Math. Soc.,36, 29–95 (1933).Google Scholar
  6. 6.
    W. Burnside, “On some properties of groups,” Proc. London Math. Soc.,11, 225–245 (1912).Google Scholar
  7. 7.
    L. Redei, “Das ‘Schiefe Produkt’ in the Gruppentheorie mit anwendungen aus die endlichen nicht kommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu dener nur kommutativen Gruppen gehoren,” Comment. Math. Helv.,20, 225–264 (1947).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • A. D. Ustyuzhaninov

There are no affiliations available

Personalised recommendations