Siberian Mathematical Journal

, Volume 12, Issue 4, pp 602–606 | Cite as

Some examples of Lie groups and Lie algebras

  • L. A. Simonyan


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    B. I. Plotkin, “Algebraic sets of elements in Lie groups and Lie algebras,” Usp. Matem. Nauk,13, No. 6, 133–138 (1958).Google Scholar
  2. 2.
    L. A. Simonyan, “Two radicals for Lie algebras,” Dokl. Akad. Nauk SSSR,157, No. 2, 281–283 (1964).Google Scholar
  3. 3.
    B. Hartley, “Locally nilpotent ideals of a Lie algebra,” Proc. Cambridge Phil. Soc.,63, 257–272 (1967).Google Scholar
  4. 4.
    Ya. B. Livchak, “Locally solvable groups that are not RN* groups,” Dokl. Akad. Nauk SSSR,125, No. 2, 226–268 (1959).Google Scholar
  5. 5.
    P. Hall, “Wreath powers and characteristically simple groups,” Proc. Cambridge Phil. Soc.,58, 170–184 (1962).Google Scholar
  6. 6.
    Yu. I. Merzlyakov, “Locally solvable groups of finite rank,” Algebra i Logika (Seminar),3, No. 2, 5–16 (1964);8, No. 6, 686–690 (1969).Google Scholar
  7. 7.
    A. G. Kurosh, “Radicals in group theory,” Sib. Mat. Zh.,III, No. 6, 912–931 (1962).Google Scholar
  8. 8.
    E. M. Levich, “An example of a locally nilpotent torsion-free group with no attainable elements,” Sib. Mat. Zh.,VIII, No. 3, 717–719 (1967).Google Scholar
  9. 9.
    L. Ya. Gringlaz and A. I. Tokarenko, “Examples of locally finitely stable torsion-free non-Baer groups,” Matem. Zap. Ural'sk. Gos. Univ,6, No. 3, 18–28 (1967).Google Scholar
  10. 10.
    E. M. Kublanova, “Free stable representations and stable wreaths of groups,” Trudy Rizhsk. Algebr. Sem., 51–73, Riga (1969).Google Scholar
  11. 11.
    E. M. Levich, “An example of a locally nilpotent Lie algebra with no attainable elements,” First All-Union Symposium on Theory of Rings and Modules, Summary of Transactions and Proceedings [in Russian], Kishinev (1968).Google Scholar
  12. 12.
    Kourovskaya Tetrad', Unsolved Problems in the Theory of Groups [in Russian], Izd. 2, Novosibirsk (1967).Google Scholar
  13. 13.
    B. I. Plotkin, Groups of Automorphisms of Algebraic Systems [in Russian], Izd. Nauka (1966).Google Scholar
  14. 14.
    N. Jacobson, Lie Algebras [Russian translation], Izd. Mir (1964).Google Scholar
  15. 15.
    Seminar “Sophus Lie,” Theory of Lie Algebras. Topological Lie Groups [Russian translation], IL (1962).Google Scholar
  16. 16.
    E. M. Levich and A. I. Tokarenko, “Remarks on locally nilpotent torsion-free groups,” Sib. Mat. Zh.,XI, No. 6, 1406–1408 (1970).Google Scholar
  17. 17.
    G. Birkhoff, “Representability of Lie algebras and Lie groups by matrices,” Ann Math.,38, No. 2, 526–532 (1937).Google Scholar
  18. 18.
    E. B. Dynkin, “Representations of the series for log (exey) with noncommutative x and y, in terms of commutators,” Mat. Sbornik,25, No. 1, 155–162 (1949).Google Scholar
  19. 19.
    S. Jennings, “The group ring of a class of infinite nilpotent groups,” Canad. J. Math.,7, 169–187 (1955).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • L. A. Simonyan

There are no affiliations available

Personalised recommendations