Siberian Mathematical Journal

, Volume 16, Issue 6, pp 956–962 | Cite as

Efficient linear orders

  • A. G. Pinus


Linear Order Efficient Linear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. Church, “The constructive second number class,” Bull. Amer. Math. Soc.,44, 224–232 (1938).Google Scholar
  2. 2.
    A. Church and S. C. Kleene, “Formal definitions in the theory of ordinal numbers,” Fund. Math.,28, 11–21 (1937).Google Scholar
  3. 3.
    S. C. Kleene, “On notation for ordinal numbers,” J. Symbolic Logic,3, 150–155 (1938).Google Scholar
  4. 4.
    H. Rogers, Jr., Theory of Recursive Functions and Efficient Computability, McGraw-Hill, New York (1967).Google Scholar
  5. 5.
    P. Erdös and A. Hajnal, “On a classification of denumerable order types and an application to the partition calculus,” Fund. Math.,51, 117–129 (1962).Google Scholar
  6. 6.
    F. Hausdorff, “Grundzüge einer Theorie der geordneten Mengen,” Math. Ann.,65, 435–505 (1908).Google Scholar
  7. 7.
    S. S. Goncharov, “Constructive superatomic Boolean algebra,” Algebra i Logika,12, No. 1, 31–40 (1973).Google Scholar
  8. 8.
    F. Gass, “A note on II11 ordinals,” Notre Dame J. Formal Logic,13, No. 1, 103–105 (1972).Google Scholar
  9. 9.
    S. S. Goncharov, “Certain properties relating to the construction of Boolean algebra,” Sibirsk Matem. Zh.,16, No. 2, 264–278 (1975).Google Scholar
  10. 10.
    W. Markwald, “Zur Theorie der konstruktiven Wohlordnungen,” Math. Ann.,127, 135–149 (1954).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. G. Pinus

There are no affiliations available

Personalised recommendations