Siberian Mathematical Journal

, Volume 19, Issue 1, pp 154–160 | Cite as

An analog of the conformal radius

  • A. Yanushauskas


Conformal Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. Polya and G. Szegö, “Über den transfiniten Durchmesser (Kapazitätkonstante) von ebenen und räumlichen Punktmengen,” J. Reine Angew. Math.,165, 4–49 (1931).Google Scholar
  2. 2.
    D. Hilbert, “Über die Entwicklung einer beliebigen analytischen Funktion,” Gött. Nachr., 63–70 (1897).Google Scholar
  3. 3.
    A. Yanushauskas, “Harmonic mappings of three-dimensional domains,” Differents. Uravn. Primen., No. 7, 93–151 (1974).Google Scholar
  4. 4.
    O. D. Kellogg, Foundations of Potential Theory, Springer-Verlag, Berlin (1929).Google Scholar
  5. 5.
    M. Schiffer, “The Fredholm eigenvalues of plane domains,” Pac. J. Math.,7, 1187–1225 (1957).Google Scholar
  6. 6.
    R. Courant, Partial Differential Equations [Russian translation], Mir, Moscow (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • A. Yanushauskas

There are no affiliations available

Personalised recommendations