Siberian Mathematical Journal

, Volume 11, Issue 2, pp 310–314 | Cite as

A basis for the space of functions analytic in a disk

  • N. I. Nagnibida
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. Köthe, “Dualität in der Funktiontheorie,” J. Reine und Angew. Math., 191, 29–49 (1953).Google Scholar
  2. 2.
    N. I. Nagnibida, “Some properties of generalized integration operators in analytic space,” Sib. Matem. Zh.,7, No. 6, 1306–1318 (1966).Google Scholar
  3. 3.
    M. G. Khaplanov, “Linear transformations of analytic spaces,” Dokl. Akad. Nauk SSSR,80, No. 1, 21–24 (1951).Google Scholar
  4. 4.
    K. M. Fishman, “A problem concerning linear transformations of analytic spaces,” Dokl. Akad. Nauk SSSR,127, No. 1, 40–43 (1959).Google Scholar
  5. 5.
    Yu. A. Kaz'min, “Completeness of certain types of sequences of analytic functions,” Sib. Matem. Zh.,7, No. 1, 79–82 (1966).Google Scholar
  6. 6.
    S. Ya. Al'per, “The completeness of systems of analytic functions,” Dokl. Akad. Nauk SSSR,66, No. 6, 1029–1032 (1949).Google Scholar
  7. 7.
    A. I. Markushevich, Analytic Function Theory [in Russian], GITTL, Moscow-Leningrad (1950).Google Scholar
  8. 8.
    K. M. Fishman and G. M. Sas'ko, “Certain systems of functions possessing quasi-power bases in spaces of functions analytic in a disk,” Dokl. Akad. Nauk SSSR,146, No. 2, 314–317 (1962).Google Scholar
  9. 9.
    A. I. Markushevich, “Bases in spaces of analytic functions,” Matem. Sb.,17, No. 2, 211–252 (1945).Google Scholar
  10. 10.
    M. G. Khaplanov, “Completeness of certain systems of analytic functions,” Uch. Zap. Rostovskogona-Donu Gos. Ped. In-ta, No. 3, 53–58 (1955).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1970

Authors and Affiliations

  • N. I. Nagnibida

There are no affiliations available

Personalised recommendations