Neurochemical Research

, Volume 17, Issue 11, pp 1057–1062 | Cite as

Autoradiography of muscarinic cholinergic receptors in cortical and subcortical brain regions of C57BL/6 and DBA/2 mice

  • C. Schwab
  • G. Brückner
  • T. Rothe
  • C. Castellano
  • A. Oliverio
Original Articles


Mice of the inbred strains C57BL/6 and DBA/2 show strain-dependent behavioural differences which have been correlated with variations in brain cholinergic systems. In the present study, the density of muscarinic cholinergic receptors in both strains of mice was determined by autoradiographic methods using [3H]quinuclidinyl benzilate (QNB) and [3H]pirenzepine as ligands. C57BL/6 mice showed a significantly lower [3H]QNB binding level in the frontal cortex by one third as compared to DBA/2 mice. In the striatum and the cholinergic pontomesencephalic nucleus laterodorsalis tegmenti the [3H]QNB binding was lower in C57BL/6 by 28% and 31%, respectively. The [3H]pirenzepine binding level was found to be significantly higher in C57BL/6 temporal cortex (by 22%). These results are discussed in relation to interstrain differences in cholinergic cell density and in the activity of cholinergic enzymes.

Key Words

[3H]QNB [3H]pirenzepine autoradiography C57BL/6 mice DBA/2 mice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bovet, D., Bovet-Nitti, F., and Oliverio, A. 1969. Genetic aspects of learning and memory in mice. Science 163:139–149.Google Scholar
  2. 2.
    Mandel, P., Ayad, G., Hermetet, J. C., and Ebel, A. 1974. Correlation between choline acetyltransferase activity and learning ability in different mice strains and their offspring. Brain Res. 72:65–70.Google Scholar
  3. 3.
    Oliverio, A., Castellano, C., and Messeri, P. 1972. Genetic analysis of avoidance, maze and wheel running behaviors in the mouse. J. Comp. Physiol. Psychol. 79:459–473.Google Scholar
  4. 4.
    Castellano, C., Oliverio, A., Schwab, C., Brückner, G., and Biesold, D. 1988. Age-dependent differences in cholinergic drug response in two strains of mice. Neurosci. Lett. 84:335–338.Google Scholar
  5. 5.
    Marks, M. J., Patinkin, D. M., Artman, L. D., Burch, J. B., and Collins, A. C. 1981. Genetic influences on cholinergic drug response. Pharm. Biochem. Behav. 15:271–279.Google Scholar
  6. 6.
    Albanese, A., Gozzo, S., Iacopino, C., and Altavista, M. C. 1985. Strain-dependent variations in the number of forebrain cholinergic neurons. Brain Res. 334:380–384.Google Scholar
  7. 7.
    Iacopino, C., Altavista, M. C., Gozzo, S., and Albanese, A. 1986. Quantitative pharmacohistochemistry of acetylcholinesterase in neostriatum of inbred strains of mice. Brain Res. 374:402–408.Google Scholar
  8. 8.
    Schwab, C., Brückner, G., Castellano, C., Oliverio, A., and Biesold, D. 1990. Regional cholinergic differences in the brain of DBA/2 and C57BL/6 mice: a morphological study during ontogeny. Dementia 1:74–81.Google Scholar
  9. 9.
    Ebel, A., Hermetet, J. C., and Mandel, P. 1973. Comparative study of acetylcholinesterase and acetylcholine transferase enzyme activity in brain of DBA and C57 mice. Nature New Biol. 242:56–58.Google Scholar
  10. 10.
    Pryor, G. T. 1968. Postnatal development of cholin- esterase, aromatic L-aminoacid decarboxylase and monoamine oxidase in C57BL/6 and DBA/2 mice. Life Sci. 7:867–874.Google Scholar
  11. 11.
    Schwab, C., Brückner, G., Castellano, C., Oliverio, A., and Biesold, D. 1990. Different level of acetylcholinesterase and choline acetyltransferase activities in C57BL/6 and DBA/2 mice are not accompanied with different density of cortical acetylcholinesterase reactive fibers. Neurochem. Res. 15:1127–1133.Google Scholar
  12. 12.
    Aronstam, R. S., Kellogg, C., and Abood, L. G. 1979. Development of muscarinic cholinergic receptors in inbred strains of mice: identification of receptor heterogeneity and relation to audiogenic seizure susceptibility. Brain Res. 162:231–241.Google Scholar
  13. 13.
    Schliebs, R., Walch, C., and Stewart, M. G. 1989. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using receptor autoradiography. J. Hirnforsch. 30:303–311.Google Scholar
  14. 14.
    Unnerstall, J. R., Niehoff, D. L., Kuhar, M. J., and Palacios, J. M. 1982. Quantitative receptor autoradiography using3H ultrofilm: application to multiple benzodiazepine receptors. J. Neurosci. Meth. 6:59–73.Google Scholar
  15. 15.
    Sidman, R. L., Angevine, J. B., and Taber Pierce, E. 1971. Atlas of the mouse brain and spinal cord. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  16. 16.
    Baumgold, J. 1987. Muscarinic receptors in brain from four strains of inbred mice. Neurochem. Res. 12:1049–1051.Google Scholar
  17. 17.
    Cortes, R., and Palacios, J. M. 1986. Muscarinic cholinergic receptor subtypes in the rat brain. I. Quantitative autoradiographic studies. Brain Res. 362:227–238.Google Scholar
  18. 18.
    Gurwitz, D., Egozi, Y., Henis, Y. I., Kloog, Y., and Sokolovsky, M. 1987. Agonist and antagonist binding to rat brain muscarinic receptors: Influence of aging. Neurobiol. Aging 8:115–122.Google Scholar
  19. 19.
    Kubanis, P., Zornetzer, S. F., and Freund, G. 1982. Memory and postsynaptic cholinergic receptors in aging mice. Pharm. Biochem. Behav. 17:313–322.Google Scholar
  20. 20.
    Schliebs, R., and Stewart, M. G. 1990. Unilateral decortication affects muscarinic cholinergic binding sites in rat basal forebrain. Neurochem. Int. 16:81–87.Google Scholar
  21. 21.
    Quirion, R., Aubert, I., Lapchak, P. A., Schaum, R. P., Teolis, S., Gauthier, S., and Araujo, D. M. 1989. Muscarinic receptor subtypes in human neurodegenerative disorders: focus on Alzheimer's disease. Trends Pharmacol. Sci. 10 Suppl. pp:80–84.Google Scholar
  22. 22.
    Mash, D. C., and Potter, L. T. 1986. Autoradiographic localization of M1 and M2 muscarinic receptors in the rat brain. Neurosci. 19:551–564.Google Scholar
  23. 23.
    Butcher, L. L., and Woolf, N. J. 1986. Central cholinergic systems: synopsis of anatomy and overview of physiology and pathology. Pages 73–86in Scheibel, A. B., and Wechsler, A. F., (eds.), The Biological Substrates of Alzheimer's Disease, Academic Press, New York, London, Paris.Google Scholar
  24. 24.
    Mesulam, M.-M., Mufson, E. J., Wainer, B. H., and Levey, A. I. 1983. Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neurosci. 10:1185–1201.Google Scholar
  25. 25.
    Peralta, E. G., Ashkenazi, A., Winslow, J. W., Smith, D. H., Ramachandran, J., and Capon, D. J. 1987. Distinct primary structure, ligand-binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J 6:3923–3929.Google Scholar
  26. 26.
    Watson, S., and Abbott, A. 1991. TIPS Receptor Nomenclature Supplement January 1992. Trends Pharmacol. Sci. 12:Suppl. pp. 1–36.Google Scholar
  27. 27.
    Quirion, R., Araujo, D., Regengold, W., and Boksa, P. 1989. Characterization and quantitative autoradiographic distribution of [3H]acetylcholine muscarinic receptors in mammalian brain. Apparent labeling of an M2-like receptor subtype. Neurosci. 29:271–289.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • C. Schwab
    • 1
  • G. Brückner
    • 1
  • T. Rothe
    • 1
  • C. Castellano
    • 2
  • A. Oliverio
    • 2
    • 3
  1. 1.Paul Flechsig Institute for Brain Research, Department of NeurochemistryUniversity of LeipzigLeipzig(FRG)
  2. 2.Istituto di Psicobiologia e Psicofarmacologia del CNRUniversità “La Sapienza”Roma(Italy)
  3. 3.Dipartimento di Genetica e Biologia MolecolareUniversità “La Sapienza”Roma(Italy)

Personalised recommendations