Neurochemical Research

, Volume 18, Issue 4, pp 401–410 | Cite as

2-Oxoglutarate transport: A protential mechanism for regulating glutamate and tricarboxylic acid cycle intermediates in neurons

  • Richard P. Shank
  • Debra J. Bennett
Microanatomy and Metabolism


2-Oxoglutarate (α-ketoglutarate) is transported into synaptosomal and synaptoneurosomal preparations by a Na+-dependent, high-affinity process that exhibits complex kinetics, and is differentially modulated by glutamate, glutamine, aspartate, malate, and a soluble, heat-labile substance of high molecular weight present in rat brain extracts. Glutamate and aspartate generally inhibit 2-oxoglutarate uptake, but under certain conditions may increase uptake. Glutamine generally increases 2-oxoglutarate uptake, but under certain conditions may inhibit uptake. One interpretation of our results is that 2-oxoglutarate uptake is mediated primarily by a transporter that exhibits negative cooperativity and possesses three regulatory sites that differentially modulate substrate affinity, Vmax, and negative cooperativity. Glutamate, aspartate, malate, and 2-oxoglutarate itself may interact with a site that reduces substrate affinity; whereas glutamine, and possibly glutamate and aspartate, appear to interact with another site that increases Vmax. A putative regulatory protein appears to abolish negative cooperativity and increases substrate affinity in the absence of glutamine. Based on the evidence that glutamatergic and GABAergic neurons depend on astrocytes to supply precursors to replenish their neurotransmitter and tricarboxylic acid cycle pools, the uptake of 2-oxoglutarate, presumably into synaptic terminals, may reflect a role for this metabolite in replenishing the transmitter and tricarboxylic acid pools, and a role for the transporter as a site at which these pools are regulated.

Key Words

2-Oxoglutarate glutamate glutamine astrocytes allosteric regulation negative cooperativity 

Abbreviations used


aspartate aminotransferase






N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid


low-density synaptosomes




2-oxoglutarate (α-ketoglutarate)


pyruvate carboxylase


pyruvate dehydrogenase


tricarboxylic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shank, R. P., and Campbell, G. LeM. 1983. Glutamate. Pages 381–404,in Lajtha A. (ed.), Handbook of Neurochemistry (2nd Ed.), Vol. 3, Plenum Press, New York.Google Scholar
  2. 2.
    Shank, R. P., and Aprison, M. H. 1988. Glutamate as a neurotransmitter. Pages 3–20,in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals, Vol. II, CRC Press, Boca Raton, Florida.Google Scholar
  3. 3.
    Cooper, A. J. L. 1988. L-glutamate (2-oxoglutarate) aminotransferases. Pages 123–152,in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals, Vol. I, CRC Press, Boca Raton, Florida.Google Scholar
  4. 4.
    Cooper, A. J. L., and Plum, F. 1987. Biochemistry and physiology of brain ammonia. Physiological Rev. 67:440–519.Google Scholar
  5. 5.
    Olney, J. W., Collins, R. C., and Sloviter, R. S. 1986. Excitotoxic mechanisms of epileptic brain damage. Adv. Neurol. 44:857–877.Google Scholar
  6. 6.
    Kvamme, E. 1968. Regulatory aspects of endogenous glutamate in brain. Pages 41–46,in Roberts, P. J., Storm-Mathisen, J., and Bradford, H. (eds.), Excitatory Amino Acids, MacMillan Press, London.Google Scholar
  7. 7.
    Berl, S., and Clarke, D. D. 1969. Metabolic compartmentalization of glutamate in the CNS. Pages 447–472,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 1, Plenum Press, New York.Google Scholar
  8. 8.
    Van den Berg, C. J., and Garfinkel, D. 1971. A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem. J. 123:211–221.Google Scholar
  9. 9.
    Nicklas, W. J. 1988. Glutamate and glutamine: an overview. Pages 1–4,in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals, Vol. 1, CRC Press, Boca Raton, Florida.Google Scholar
  10. 10.
    Tipton, K. F., and Couee, I. 1988. Glutamate dehydrogenase. Pages 81–100,in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals, Vol. I, CRC Press, Boca Raton, Florida.Google Scholar
  11. 11.
    Benjamin, A. M. 1981. Control of glutaminase in rat brain cortex in vitro: influence of glutamate, phosphate, ammonium, calcium and hydrogen ions. Brain Res. 208:363–370.Google Scholar
  12. 12.
    Kvamme, E., Svenneby, G., and Torgner, I. A. Glutaminases Pages 53–68,in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals, Vol. I, CRC Press, Boca Raton, Florida.Google Scholar
  13. 13.
    Norenberg, M., and Martinez-Hernandez, A. 1979. Fine structural localization of glutamine synthetase in astrocytes in brain. Brain Res. 161:303–310.Google Scholar
  14. 14.
    Cooper, A. J. L. 1988. Glutamine synthetase. Pages 7–32,in Kvamme, E. (ed.), Glutamine and Glutamate in Mammals, Vol. I, CRC Press, Boca Raton, Florida.Google Scholar
  15. 15.
    Schmidt, W., and Wolf, G. 1984. Histochemical localization of aspartate aminotransferase activity in the hippocampal formation and the peripheral ganglia of the rat with special reference to the glutamate transmitter metabolism. J. Hirnsforsch. 25:505–510.Google Scholar
  16. 16.
    Monaghan, P. I., Beitz, A. J., Larson, A. A., Altschular, R. A., Madl, J. E., and Mullett, M. A. 1986. Immunocytochemical localization of glutamate-, glutaminase- and aspartate aminotransferase-like immunoreactivity in the rat deep cerebellar nuclei. Brain Res. 363:364–370.Google Scholar
  17. 17.
    Shank, R. P., and Aprison, M. H. 1981. Present status and significance of the glutamine cycle in neural tissues. Life Sci. 28:837–842.Google Scholar
  18. 18.
    Yu, A. C. H., Drejer, J., Hertz, L., and Schousboe, A. 1983. Pyruvate carboxylase activity in primary cultures of astrocytes and neurons. J. Neurochem. 41:1481–1487.Google Scholar
  19. 19.
    Shank, R. P., Bennett, G. S., Freytag, S. O., and Campbell, G. LeM. 1985. Pyruvate carboxylase: an astrocyte-specific enzyme implicated in the replenishment of amino acid neurotransmitter pools. Brain Res. 329:364–367.Google Scholar
  20. 20.
    Henn, F. A., and Hamberger, A. 1971. Glial cell function: Uptake of transmitter substances. Proc. Natl. Acad. Sci. (USA) 68:2686–2690.Google Scholar
  21. 21.
    Hertz, L. 1979. Functional interaction between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13:277–323.Google Scholar
  22. 22.
    Bradford, H. F., Ward, H. K., and Thomas, A. J. 1978. Glutamine—a major substrate for nerve endings. J. Neurochem. 30:1453–1459.Google Scholar
  23. 23.
    Shank, R. P., and Aprison, M. H. 1977. Glutamine uptake and metabolism by the isolated toad brain: evidence pertaining to its proposed role as a transmitter precursor. J. Neurochem. 28:1189–1196.Google Scholar
  24. 24.
    Nicklas, W. J. 1986. Glia-neuronal interrelationships in the metabolism of excitatory amino acids. Pages 57–66,in Roberts, P. J., Storm-Mathisen, J., and Bradford, H. (eds.), Excitatory Amino Acids, MacMillan Press, London.Google Scholar
  25. 25.
    Yudkoff, M., Nissim, I., and Pleasure, D. 1988. Astrocyte metabolism of [15N]glutamine: Implications for the glutamine-glutamate cycle. J. Neurochem. 51:843–850.Google Scholar
  26. 26.
    Rothstein, J. D., and Tabakoff, B. 1984. Alteration of striatal glutamate release after glutamine synthetase inhibition. J. Neurochem. 43:1438–1446.Google Scholar
  27. 27.
    Shank, R. P., and Campbell, G. LeM. 1982. Avid Na+-dependent, high-affinity uptake of alpha-ketoglutarate by nerve terminal enriched material from mouse cerebellum. Life Sci. 28:843–850.Google Scholar
  28. 28.
    Shank, R. P., and Campbell, G. LeM. 1984. Alpha-ketoglutarate and malate uptake and metabolism by synaptosomes: further evidence for an astrocyte-to-neuron metabolic shuttle. J. Neurochem. 42:1153–1154.Google Scholar
  29. 29.
    Shank, R. P., and Campbell G. LeM. 1982. Glutamate and alpha-ketoglutarate uptake and metabolism by nerve terminal enriched material from mouse cerebellum. Neurochem. Res. 7:601–616.Google Scholar
  30. 30.
    Tsai, C., and Lehmann, J. 1987. Glutamate-sensitive α-ketoglutarate uptake into nerve terminals: sodium dependence. Pages 161–164,in Hicks, T. P., Lodge, D., and McLennan, H. (eds.), Excitatory Amino Acid Transmission, A. R. Liss, Inc., New York.Google Scholar
  31. 31.
    Willoughby, J., Craig, F. E., Harvey, S. A. K., and Clark, J. B. 1989. 2-Oxoglutarate: Oxidation and role as a potential precursor of cytosolic acetyl-CoA for the synthesis of acetylcholine in rat brain synaptosomes. J. Neurochem. 52:896–901.Google Scholar
  32. 32.
    Sonnewald, U., Westergaard, N., Krane, J., Unsgard, G., Petersen, S. B., and Schouseboe, A. 1991. First direct demonstration of preferential release of citrate from astrocytes using [13C]NMR spectroscopy of cultured neurons and astrocytes. Neurosci. Letters 128:235–239.Google Scholar
  33. 33.
    Kaufman, E. K., and Driscoll, B. F. 1992. Carbon dioxide fixation in neuronal and astroglial cells in culture. J. Neurochem. 58:258–262.Google Scholar
  34. 34.
    Patel, M. S. 1974. The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J. Neurochem. 22:717–724.Google Scholar
  35. 35.
    Shank, R. P., and Campbell, G. LeM. 1984. Glutamine, glutamate and other possible regulators of α-ketoglutarate and malate uptake by synaptic terminals. J. Neurochem. 42:1162–1169.Google Scholar
  36. 36.
    Hollingsworth, E. B., McNeal, E. T., Burton, J. L., Williams, R. J., Daly, J. W., and Creveling, C. R. 1985. Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: Cyclic adenosine 3′∶5′ monophosphate-generating systems, receptors and enzymes. J. Neuroscience, 5:2240–2253.Google Scholar
  37. 37.
    Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72:248–254.Google Scholar
  38. 38.
    Shank, R. P., and Baldy, W. J. 1990. Adenosine transport by rat and guinea pig synaptosomes: basis for differential sensitivity to transport inhibitors. J. Neurochem. 55:541–550.Google Scholar
  39. 39.
    Shank, R. P., Schneider, C. R., and Tighe, J. J. 1987. Ion dependence of neurotransmitter uptake: inhibitory effects of ion substitutes. J. Neurochem. 49:381–388.Google Scholar
  40. 40.
    Shank, R. P., Baldy, W. J., and Ash, C. W. 1989. Glutamine and 2-oxoglutarate as metabolic precursors of the transmitter pools of glutamate and GABA: Correlation of regional uptake by rat brain synaptosomes. Neurochem. Res. 14:371–376.Google Scholar
  41. 41.
    Shank, R. P., and Baxter, C. F. 1973. Metabolism of glucose, amino acids, and some related metabolites in the brain of toads (bufo boreas) adapted to fresh water or hyperosmotic enviroments. J. Neurochem. 21:301–313.Google Scholar
  42. 42.
    Palaiologos, G., Hertz, L., and Schouseboe, A. 1988. Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J. Neurochem. 51:317–320.Google Scholar
  43. 43.
    Peng, L. A., Schousboe, A., and Hertz, L. 1991. Utilization of alpha-ketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells. Neurochem. Res. 16:29–34.Google Scholar
  44. 44.
    Yudkoff, M., Nissim, I., and Hertz, L. 1990. Precursors of glutamic acid nitrogen in primary neuronal cultures: studies with15N. Neurochem. Res. 15:1191–1196.Google Scholar
  45. 45.
    Shank, R. P., Leo, G. C., and Zielke, H. R. 1992. Cerebral metabolic compartmentation as revealed by nuclear magnetic resonance analysis of [1-13C]D-glucose metabolism. J. Neurochem. (in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Richard P. Shank
    • 1
  • Debra J. Bennett
    • 1
  1. 1.Drug Discovery ResearchThe R. W. Johnson Pharmaceutical Research InstituteSpring House

Personalised recommendations