Skip to main content
Log in

GABA—The quintessential neurotransmitter: Electroneutrality, fidelity, specificity, and a model for the ligand binding site of GABAA receptors

  • Microanatomy and Metabolism
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alone of the known neurotransmitters, GABA is an electroneutral zwitterion (pI=7.3) at physiological pH. This confers the highest probability of successfully traversing densely packed synaptic gaps without interacting electrostatically with charged entities enroute, making GABA a high fidelity neurotransmitter. Inhibitory tone in the nervous system is coordinately coupled with physiological activity by means of the GABA system, acidification increasing GABA formation and its Cl channel-opening efficacy, while decreasing its removal by transport and metabolic degradation. The above, together with diminution upon acidification of the postsynaptic efficacy of glutamate on excitatory NMDA receptors constitutes a sensitively responsive mechanism by which protons control levels of neural activity, locally and globally. A model made of the GABA binding site of GABAA receptors based on H-bond and hydrophobic interactions makes it seem unlikely that any other substance known to occur in nerve tissue would give rise to a high noise level at GABAA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, E. 1991. Living systems are tonically inhibited, autonomous optimizers, and disinhibition coupled to variability generation is their major organizing principle: inhibitory command-control at levels of membrane, genome, metabolism, brain, and society. Neurochem Res 16:409–421.

    Google Scholar 

  2. Roberts, E. 1976. Disinhibition of an organizing principle in the nervous system—The role of the GABA system. Application to neurologic and psychiatric disorders. Pages 515–539, in Roberts, E., Chase, T. N., and Tower, D. B. (eds.), GABA in Nervous System Function, Kroc Foundation Series, Vol. 5, Raven Press, New York.

    Google Scholar 

  3. Roberts, E. 1986. GABA: The road to neurotransmitter status. Pages 1–39,in Olsen, R.W. and Venter, J.C. (eds.), Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties, Alan R. Liss, Inc., New York.

    Google Scholar 

  4. Roberts, E. 1986. Failure of GABAergic inhibition: A key to local and global seizures. Adv. Neurol. 44:319–341.

    Google Scholar 

  5. Roberts, E. 1986. What do GABA neurons really do? They make possible variability generation in relation to demand. Exp. Neurol. 93:279–290.

    Google Scholar 

  6. Barker, J. L., and Mathers, D. A. 1981. GABA analogues activate channels of different duration on cultured mouse spinal neurons. Science 212:358–361.

    Google Scholar 

  7. Olsen, R. W., and Tobin, A. J. 1990. Molecular biology of GABAA receptors. FASEB J 4:1469–1480.

    Google Scholar 

  8. Wisden, W., Laurie, D. J., Monyer, H., and Seeburg, P. H. 1992. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12:1040–1062.

    Google Scholar 

  9. Laurie, D. J., Seeburg, P. H., and Wisden, W. 1992. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J. Neurosci. 12:1063–1076.

    Google Scholar 

  10. Burt, D. R., and Kamatchi, G. L. 1991. GABAA receptor subtypes: from pharmacology to molecular biology. FASEB J 5:2916–2923.

    Google Scholar 

  11. Greenstein, J. P., and Winitz, M. 1961. Chemistry of the Amino Acids. Vol. 1, pp. 486–489. John Wiley & Sons, Inc., New York, London.

    Google Scholar 

  12. Vos, J., Kuriyama, K., and Roberts, E. 1968. Electrophoretic mobilities of brain subcellular particles and binding of γ-aminobutyric acid, acetylcholine, norepinephrine, and 5-hydroxytryptamine. Brain Res. 9:224–230.

    Google Scholar 

  13. Sakmann, B. 1992. Elementary steps in synaptic transmission revealed by currents through single ion channels. Neuron 8:613–629.

    Google Scholar 

  14. Bormann, J., Hamill, O. P., and Sakmann, B. 1987. Mechanism of anion permeation through channels gated by glycine and γ-aminobutyric acid in mouse cultured spinal neurones. J. Physiol. 385:243–286.

    Google Scholar 

  15. Traynelis, S. F., and Cull-Candy, S. G. 1990. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347–350.

    Google Scholar 

  16. Grinstein, S., and Rothstein, A. 1986. Mechanisms of regulation of the Na+/H+ exchanger. J. Membrane Biol. 90:1–12.

    Google Scholar 

  17. Moolenaar, W. H. 1986. Effects of growth factors on intracellular pH regulation. Ann. Rev. Physiol. 48:363–376.

    Google Scholar 

  18. Roberts, E., and Eidelberg, E. 1960. Metabolic and neurophysiological roles of γ-aminobutyric acid. Int. Rev. Neurobiol. 2:279–332.

    Google Scholar 

  19. Woodbury, D. M. 1980. Antiepileptic drugs: carbonic anhydrase inhibitors. Pages 617–633, in Glaser, G. H., Penry, J. K., and Woodbury, D. M. (eds.), Antiepileptic Drugs: Mechanisms of Action, Raven Press, New York.

    Google Scholar 

  20. White, H. S., Woodbury, D. M., Chen, C. F., Kemp, J. W., Chow, S. Y., and Yen-Chow, Y. C. 1986. Role of glial cation and anion transport mechanisms in etiology and arrest of seizures. Adv. Neurol. 44:695–712.

    Google Scholar 

  21. Schlue, W.-R., and Deitmer, J. W. 1988. Ionic mechanisms of intracellular pH regulation in the nervous system. Ciba Fdn. Symp. 139:47–69.

    Google Scholar 

  22. Erlander, M. G., and Tobin, A. J. 1991. The structural and functional heterogeneity of glutamic acid decarboxylase. A review. Neurochem. Res. 16:215–226.

    Google Scholar 

  23. Wu, J.-Y., Matsuda, T., and Roberts, E. 1973. Purification and characterization of glutamate decarboxylase from mouse brain. J. Biol. Chem. 248:3029–3034.

    Google Scholar 

  24. Schousboe, A., Wu, J.-Y., and Roberts, E. 1973. Purification and characterization of the 4-aminobutyrate-2-ketoglutarate transaminase from mouse brain. Biochemistry 12:2868–2873.

    Google Scholar 

  25. Sano, K., and Roberts, E. 1963. Binding of γ-aminobutyric acid by mouse brain preparations. Biochem. Pharmacol. 12:489–502.

    Google Scholar 

  26. Roberts, E., Liron, Z., Wong, E., and Schroeder, F. 1985. Roles of proton removal and membrane fluidity in Na+- and Cl-dependent uptake of γ-aminobutyric acid by mouse brain particles. Exp. Neurol. 88:13–26.

    Google Scholar 

  27. Liron, Z., Wong, E., and Roberts, E. 1988. Studies on uptake of γ-aminobutyric acid by mouse brain particles; toward the development of a model. Brain Res. 444:119–132.

    Google Scholar 

  28. Takeuchi, A., and Takeuchi, N. 1967. Anion permeability of the inhibitory post-synaptic membrane of the crayfish neuromuscular junction. J. Physiol. 191:575–590.

    Google Scholar 

  29. Perutz, M.F. 1978. Hemoglobin structure and respiratory transport. Sci. Am. 239:92–125.

    Google Scholar 

  30. Martinez-Carrion, M. 1967. Evidence of a critical histidine residue in soluble aspartic aminotransferase. J. Biol. Chem. 242:1426–1430.

    Google Scholar 

  31. Westhead, E. W. 1965. Photooxidation with rose bengal of a critical histidine residue in yeast enolase. Biochemistry 4:2139–2144.

    Google Scholar 

  32. Melchior, Jr., W. B., and Fahrney, D. 1970. Ethoxyformylation of proteins. Reaction of ethoxyformic anhydride with α-chymotrypsin, pepsin, and pancreatic ribonuclease at pH 4. Biochemistry 9:251–258.

    Google Scholar 

  33. Volwerk, J. J., Pieterson, W. A., and de Haas, G. H. 1974. Histidine at the active site of phospholipase A2. Biochemistry 13:1446–1454.

    Google Scholar 

  34. Martinez-Carrion, M., Kuczenski, R., Tiemeier, D. C., and Peterson, D. L. 1970. The structure and enzyme-coenzyme relationship of supernatant aspartate transaminase after dye sensitized photooxidation. J. Biol. Chem. 245:799–805.

    Google Scholar 

  35. Harmsen, B. J. M., De Bruin, S. H., Janssen, L. H. M., Rodrigues De Miranada, J. F., and Van Os, G. A. J. 1971. pK change of imidazole groups in bovine serum albumin due to the conformational change at neutral pH. Biochemistry 10:3217–3221.

    Google Scholar 

  36. Padan, E., Sarkar, H. K., Viitanen, P. V., Poonian, M. S., and Kaback, H. R. 1985. Site-specific mutagenesis of histidine residues in the lac permease ofEscherichia coli. Proc. Natl. Acad. Sci. USA 82:6765–6768.

    Google Scholar 

  37. Wieland, H. A., Luddens, H., and Seeburg, P. H. 1992. A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J. Biol. Chem. 267:1426–1429.

    Google Scholar 

  38. Smart, T. G., Moss, S. J., Xie, X., and Huganir, R. L. 1991. GABAA receptors are differentially sensitive to zinc: dependence on subunit composition. Br. J. Pharmacol. 103:1837–1839.

    Google Scholar 

  39. Draguhn, A., Verdorn, T. A., Ewert, M., Seeburg, P. H., and Sakmann, B. 1990. Functional and molecular distinction between recombinant rat GABAA receptor subtypes by Zn2+. Neuron 5:781–788.

    Google Scholar 

  40. Quiocho, F. A. 1990. Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria. Phil. Trans. R. Soc. Lond. B 326:341–351.

    Google Scholar 

  41. Krause, D. N., Ikeda, K., and Roberts, E. 1981. Dose-conductance relationships for GABA agonists and the effect of uptake inhibitors in crayfish stretch receptor neurons. Brain Res. 225:319–332.

    Google Scholar 

  42. Roberts, E., Krause, D. N., Wong, E., and Mori, A. 1981. Different efficacies of d- and l-γ-amino-β-hydroxybutyric acids in GABA receptor and transport test systems. J. Neurosci. 1:132–140.

    Google Scholar 

  43. Pooler, G. W., and Steward, E. G. 1987. Structural comparisons between GABA, bicuculline and semi-rigid GABA analogues. J. Mol. Struct. 156:247–253.

    Google Scholar 

  44. Lipkowitz, K. B., Gilardi, R.D. and Aprison, M. H. 1989. Electronic and structural features of gamma-aminobutyric acid (GABA) and four of its direct agonists. J. Mol. Struct. 195:65–77.

    Google Scholar 

  45. Lee, F. S., Chu, Z.-T., Bolger, M. B., and Warshel, A. 1992. Calculations of antibody-antigen interactions: microscopic and semimicroscopic evaluation of the free energies of binding of phosphorylcholine analogs to McPC603. Protein Engineering 5:215–228.

    Google Scholar 

  46. Squires, R. F. and Saederup, E. A review of evidence for GABAergic predominance/glutamatergic deficit as a common etiological factor in both schizophrenia and affective psychoses: more support for a continuum hypothesis of “functional” psychosis. Neurochem. Res. 16:1099–1111.

  47. Mayo, S. L., Olafson, B.D., and Goddard III, W. A. 1990. Dreiding: A generic force field for molecular simulations. J. Phys. Chem. 94:8897–8909.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Claude Baxter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, E., Sherman, M.A. GABA—The quintessential neurotransmitter: Electroneutrality, fidelity, specificity, and a model for the ligand binding site of GABAA receptors. Neurochem Res 18, 365–376 (1993). https://doi.org/10.1007/BF00967239

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00967239

Key Words

Navigation