Advertisement

Siberian Mathematical Journal

, Volume 18, Issue 4, pp 658–663 | Cite as

The Cauchy problem for a hyperbolic equation degenerating on the initial plane with altered initial data

  • F. T. Baranovskii
Notes
  • 15 Downloads

Keywords

Initial Data Cauchy Problem Hyperbolic Equation Initial Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. Hellwig, “Über partielle Differentialgleichungen zweiter Ordnung gemischten, Typus,” Math. Zeit.,61, No. 1, 26–46 (1954).Google Scholar
  2. 2.
    F. T. Baranovskii, “The Cauchy problem for a linear hyperbolic equation, of second order which degenerates on the initial plane,” Uch. Zap. Leningr., Ped. Inst.,166, 227–254 (1958).Google Scholar
  3. 3.
    F. T. Baranovskii, “The Cauchy problem for an equation of Euler-Darboux type and for a degenerating hyperbolic equation,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 6, 11–23 (1960).Google Scholar
  4. 4.
    F. T. Baranovskii, “On the Cauchy problem for a strongly degenerating hyperbolic equation,”. Sib. Mat. Zh.,4, No. 5, 1000–1011 (1963).Google Scholar
  5. 5.
    S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, Izd. Leningr. Univ., Leningrad (1950).Google Scholar
  6. 6.
    S. A. Tersenov, “On the theory of hyperbolic equations with data on a line of degeneracy,” Sib. Mat. Zh.,2, No. 6, 913–935 (1961).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • F. T. Baranovskii

There are no affiliations available

Personalised recommendations