Advertisement

Lithuanian Mathematical Journal

, Volume 20, Issue 3, pp 199–205 | Cite as

Metric and analytic number theory at Vilnius University

  • M. Maknys
Article
  • 26 Downloads

Keywords

Number Theory Analytic Number Analytic Number Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. Kubilyus, “On the application of I. M. Vinogradov's method to solve a problem of metric number theory,” Dokl. Akad. Nauk SSSR,67, 783–786 (1949).Google Scholar
  2. 2.
    I. Kubilyus, “Distribution of primes in a Gaussian field in sectors,” Uch. Zap. Leningr. Gos. Univ., Ser. Mat.,19, 40–52 (1950).Google Scholar
  3. 3.
    I. Kubilyus, “On the decomposition of primes into two squares,” Dokl. Akad. Nauk SSSR,77, 791–794 (1952).Google Scholar
  4. 4.
    I. Kubilyus, “On some problems of the geometry of primes,” Mat. Sb.,31 (73), 507–542 (1952).Google Scholar
  5. 5.
    I. Kubilyus, “On a problem of the multidimensional analytic theory of numbers,” Uch. Zap. Vil'nyussk. Univ., Ser. Mat., Fiz. Khim. Nauk,4, 5–43 (1955).Google Scholar
  6. 6.
    I. Kubilyus and Yu. V. Linnik, “An elementary theorem of the theory of primes,” Usp. Mat. Nauk,11, No. 2, 191–192 (1956).Google Scholar
  7. 7.
    I. Kubilyus, “On a metric problem of Diophantine approximation,” Tr. Akad. Nauk Lit. SSR, Ser. B,2, (18), 3–7 (1959).Google Scholar
  8. 8.
    B. M. Bredikhin, “Free numerical semigroups with power densities,” Mat. Sb.,46, (88), No. 2, 143–158 (1958).Google Scholar
  9. 9.
    K. Bulota, “Some theorems on the density of zeros of the Hecke Z-functions,” Liet. Mat. Rinkinys,3, No. 1, 29–50 (1963).Google Scholar
  10. 10.
    K. Bulota, “An approximate functional equation for the Hecke Z-functions of an imaginary quadratic field,” Liet. Mat. Rinkinys,2, No. 1, 39–82 (1962).Google Scholar
  11. 11.
    K. Bulota, “On an approximate functional equation for the Hecke Z-functions,” Liet. Mat. Rinkinys,4, No. 1, 183–196 (1964).Google Scholar
  12. 12.
    K. Bulota, “On the Hecke Z-functions and the distribution of primes of an imaginary quadratic field,” Liet. Mat. Rinkinys,4, No. 3, 309–326 (1964).Google Scholar
  13. 13.
    I. M. Vaitkyavichyus, “An estimate for the error term of an asymptotic distribution law for primes in a Gaussian field,” Liet. Mat. Rinkinys,2, No. 2, 83–98 (1962).Google Scholar
  14. 14.
    I. M. Vaitkyavichyus, “On mutual decompositions of primes of Gaussian fields on the plane,” Liet. Mat. Rinkinys,4, No. 4, 477–491 (1964).Google Scholar
  15. 15.
    A. I. Vinogradov, “On the density conjecture for Dirichlet L-series,” Izv. Akad. Nauk SSSR, Ser. Mat.,29, No. 4, 903–934 (1965).Google Scholar
  16. 16.
    I. M. Vinogradov, The Method of Trigonometric Sums in Number Theory [in Russian], Nauka, Moscow (1971).Google Scholar
  17. 17.
    É. Gaigalas, “On the scalar product of Hecke L-series of quadratic fields,” Liet. Mat. Rinkinys,15, No. 4, 41–52 (1975).Google Scholar
  18. 18.
    É. Gaigalas, “On the scalar product of Hecke L-series of some algebraic fields,” Liet. Mat. Rinkinys,17, No. 1, 65–74 (1977).Google Scholar
  19. 19.
    I. Kalinka, “On a lemma of Khua-Lo-Ken for algebraic fields,” Liet. Mat. Rinkinys,3, No. 1, 155–166 (1963).Google Scholar
  20. 20.
    A. F. Lavrik, “An approximate functional equation for the Hecke zeta-functions of a quadratic field,” Mat. Zametki,2, No. 5, 475–482 (1967).Google Scholar
  21. 21.
    Yu. V. Linnik, “On the least prime in an arithmetic progression. I,” Mat. Sb.,15 (57), 139–178 (1944); II,15 (57), 347–368 (1944).Google Scholar
  22. 22.
    M. Maknys, “On the Hecke Z-functions of an imaginary quadratic field,” Liet. Mat. Rinkinys,15, No. 1, 157–172 (1975).Google Scholar
  23. 23.
    M. Maknys, “Zeros of the Hecke Z-functions and the distribution of primes of an imaginary quadratic field,” Liet. Mat. Rinkinys,15, No. 1, 173–184 (1975).Google Scholar
  24. 24.
    M. Maknys, “Density theorems for Hecke Z-functions and the distribution of primes of an imaginary quadratic field,” Liet. Mat. Rinkinys,16, No. 1, 173–180 (1976).Google Scholar
  25. 25.
    M. Maknys, “Refinement of the error term in the distribution law for primes in an imaginary quadratic field in sectors,” Liet. Mat. Rinkinys,17, No. 1, 133–137 (1977).Google Scholar
  26. 26.
    A. Matulyauskas, “An approximate functional equation for the Hecke zeta-functions of an imaginary quadratic field,” Liet. Mat. Rinkinys,9, No. 2, 291–319 (1969).Google Scholar
  27. 27.
    A. Matulyauskas, “On the Hecke ξ-function of a real quadratic field,” Liet. Mat. Rinkinys,11, No. 3, 597–605 (1971).Google Scholar
  28. 28.
    R. Slesoraitene, “Analogue of the Mahler-Sprindzhuk theorem for certain third degree polynomials in two unknowns. I,” Liet. Mat. Rinkinys,10, No. 3, 545–564 (1970); II, Liet. Mat. Rinkinys,10, No. 4, 791–813 (1970).Google Scholar
  29. 29.
    V. G. Sprindzuk, Mahler's Problem in Metric Number Theory, Amer. Math. Soc. (1969).Google Scholar
  30. 30.
    I. Urbyalis, “The distribution of primes in algebraic fields,” Liet. Mat. Rinkinys,3, No. 3, 504–515 (1963).Google Scholar
  31. 31.
    I. Urbyalis, “The distribution of primes of the real quadratic field\(K(\sqrt 2 )\),” Liet. Mat. Rinkinys,4, No. 3, 409–427 (1964).Google Scholar
  32. 32.
    I. Urbyalis, “The distribution of primes in a real quadratic field,” Liet. Mat. Rinkinys,5, No. 2, 307–344 (1965).Google Scholar
  33. 33.
    R. D. Tsibul'skite, “On the distribution of generating elements in free numerical semigroups,” Liet. Mat. Rinkinys,10, No. 2, 397–415 (1970).Google Scholar
  34. 34.
    E. Bombieri, “A remark on the large sieve,” Mathematika,12, 201–225 (1965).Google Scholar
  35. 35.
    E. Hecke, “Über eine neue Art von Zeta-funktionen und ihre Beziehungen zur Verteilung der Primzahlen, I,” Math. Z.,1, 357–376 (1918); II, Math. Z.,6, 11–51 (1920).Google Scholar
  36. 36.
    K. Mahler, “Über das Mass der Menge aller S-Zahlen,” Math. Ann.,106, 131–139 (1932).Google Scholar
  37. 37.
    H. L. Montgomery, “Mean and large values of Dirichlet polynomials,” Invent. Math.,8, 334–345 (1968).Google Scholar
  38. 38.
    H. L. Montgomery, “Zeros of L-functions,” Invent. Math.,8, 346–354 (1968).Google Scholar
  39. 39.
    H. Rademacher, “On prime numbers of real quadratic fields in rectangles,” Trans. Am. Math. Soc.,39, 380–398 (1936).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • M. Maknys

There are no affiliations available

Personalised recommendations