Advertisement

Siberian Mathematical Journal

, Volume 16, Issue 4, pp 508–523 | Cite as

Endoprojective dimension of modules

  • I. V. Bobylev
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    F. Richman and E. Walker, “Primary Abelian groups as modules over their endomorphism rings,” Math. Z.,89, 77–81 (1965).Google Scholar
  2. 2.
    A. I. Douglas and H. K. Farahat, “The homological dimensions of an Abelian group as a module over its ring of endomorphisms,” Monatsh. Math.,69, 294–305 (1965).Google Scholar
  3. 3.
    A. I. Douglas and H. K. Farahat, “The homological dimensions of an Abelian group as a module over its ring of endomorphisms. II,” Monatsh. Math.76, 109–111 (1972).Google Scholar
  4. 4.
    M. N. Arshinov, “Projective dimension of Abelian groups over their endomorphism rings,” Mat. Zametki,7, No. 1, 117–124 (1970).Google Scholar
  5. 5.
    A. L. S. Corner, “Every countable reduced torsion-free ring is an endomorphism ring,” Proc. London Math. Soc.,13, 687–710 (1963).Google Scholar
  6. 6.
    I. V. Bobylev, “Projective dimension of Abelian groups over their own endomorphism rings,” Usp. Mat. Nauk,28, No. 2, 229–230 (1973).Google Scholar
  7. 7.
    I. V. Bobylev, “Endoprojective modules,” in: Proceedings of the Twelfth All-Union Algebraic Colloquium. Abstracts of Papers [in Russian], Izd. Sverdlovskogo Un-ta, Sverdlovsk (1973), p. 129.Google Scholar
  8. 8.
    I. V. Bobylev, “Rings over which each module is endoprojective,” Usp. Mat. Nauk,29, No. 3, 182 (1974).Google Scholar
  9. 9.
    D. K. Harrison, “Infinite Abelian groups and homological methods,” Ann. Math.,69, No. 2, 366–391 (1959).Google Scholar
  10. 10.
    I. Kaplansky, Commutative Rings, Queen Mary College Math. Notes, London (1966).Google Scholar
  11. 11.
    H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton (1956).Google Scholar
  12. 12.
    M. Harada, “Hereditary semi-primary rings and triangular matrix rings,” Nagoya Math. J.,27, No. 4, 463–484 (1965).Google Scholar
  13. 13.
    L. A. Koifman, “Almost semisimple rings,” Mat. Sb.,83, 120–150 (1970).Google Scholar
  14. 14.
    C. Faith, “Modules finite over endomorphism rings,” Lect. Notes Math.,246, 145–189 (1972).Google Scholar
  15. 15.
    J.-M. Goursand, “Une caractérisation des anneaux unisériels,” Compt. Rend. Acad. Sci.,270, No. 6, A364–A367 (1970).Google Scholar
  16. 16.
    B. Osofsky, “Homological dimension and cardinality,” Trans. Amer. Math. Soc.,151, No. 2, 641–649 (1970).Google Scholar
  17. 17.
    Y. Utumi, “On continuous regular rings and semisimple self-injective rings,” Can. J. Math.,12, 597–605 (1960).Google Scholar
  18. 18.
    H. Bass, “Finitistic dimension and a homological generalization of semi-primary rings,” Trans. Amer. Math. Soc.,95, No. 3, 466–488 (1960).Google Scholar
  19. 19.
    J. Lambek, Lectures on Rings and Modules, Blainsdell, Waltham (1966).Google Scholar
  20. 20.
    B. Osofsky, “A generalization of quasi-Frobenius rings,” J. Algebra,4, No. 3, 373–387 (1966).Google Scholar
  21. 21.
    C. Faith, “Lectures on injective modules and quotient rings,” Lect. Notes Math.,49, 1–140 (1967).Google Scholar
  22. 22.
    L. A. Koifman, “Rings over which each module has a maximal submodule,” Mat. Zametki,7, No. 3, 359–367 (1970).Google Scholar
  23. 23.
    O. Zariski and P. Samuel, Commutative Algebra, Vol. 1, Van Nostrand Reinhold (1960).Google Scholar
  24. 24.
    E. Matlis, “Injective modules over Noetherian rings,” Pacif. J. Math.,8, No. 3, 511–528 (1958).Google Scholar
  25. 25.
    N. Bourbaki, Commutative Algebra (edited by A. J. Lohwater), Addison-Wesley (1972).Google Scholar
  26. 26.
    N. Bass, “On the obiquity of Gorenstein rings,” Math. Z.,82, No. 1, 8–28 (1963).Google Scholar
  27. 27.
    M. Auslander and D. Buchsbaum, “Homological dimension in local rings,” Trans. Amer. Math. Soc.,85, No. 2, 390–405 (1957).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • I. V. Bobylev

There are no affiliations available

Personalised recommendations