Siberian Mathematical Journal

, Volume 16, Issue 5, pp 755–766 | Cite as

Pointwise convergence and summability of the sequence {S n (f, x)/n} for a fourier series and a conjugate fourier series

  • A. A. Zakharov
Article
  • 16 Downloads

Keywords

Fourier Series Pointwise Convergence Conjugate Fourier Series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. Fejer, “Über die Bestimmung des Sprunges der Function aus ihrer Fourierreihe,” J. Reine und Angew. Math.,142, 165–190 (1913).Google Scholar
  2. 2.
    A. Zygmund, Trigonometric Series, Cambridge University Press (1968).Google Scholar
  3. 3.
    G. W. Morgan, “On the new convergence criteria for Fourier series of Hardy and Littlewood,” Ann. Scient. Ecole Norm. Supérieure,4, 373–382 (1935).Google Scholar
  4. 4.
    J. P. Nash, “Uniform convergence of Fourier series,” The Rise Institute, Special Pamphlet Issue, 11, 31–57 (1953).Google Scholar
  5. 5.
    R. Mohanty and M. Nanda, “On the behavior of Fourier coefficients,” Proc. Amer. Math. Soc.,5, No. 1, 79–84 (1954).Google Scholar
  6. 6.
    N. K. Bari, Trigonometric Series [in Russian], Fizmatgizdat, Moscow (1961).Google Scholar
  7. 7.
    A. A. Zakharov, “Convergence and uniform convergence of Fourier series,” Izv. Akad. Nauk SSSR, Ser. Matem.,35, 367–380 (1971).Google Scholar
  8. 8.
    G. Valiron, “Remarques sur la sommation des séries divergentes par les méthodes de M. Borel,” Rend. Circolo Mat. Palermo,42, 263–284 (1917).Google Scholar
  9. 9.
    A. A. Zakharov, “Properties of linear means of the differentiated Fourier series at points of discontinuity of the first kind,” Sibirsk. Matem. Zh.,12, No. 1, 134–146 (1971).Google Scholar
  10. 10.
    G. H. Hardy and J. E. Littlewood, “Some new convergence criteria of Fourier series,” J. London Math. Soc.,7, 252–256 (1932); Ann. Scient. Ecole Norm. Supérieure,3, 43–62 (1934).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • A. A. Zakharov

There are no affiliations available

Personalised recommendations