Skip to main content
Log in

Effect of fructose-1,6-bisphosphate on glutamate uptake and glutamine synthetase activity in hypotix astrocyte cultures

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Astrocytes are important in regulating the microencironment of neurons both by catabolic and synthetic pathways. The glutamine synthetase (GS) activity observed in astrocytes affects neurons by removing toxic substances, NH3 and glutamate; and by providing an important neuronal substrate, glutamine. This glutamate cycle might play a critical role during periods of hypoxia and ischemia, when an increase in extracellular excitatory amino acids is observed. It was previously shown in our laboratory that fructose-1,6-bisphosphate (FBP) protected cortical astrocyte cultures from hypoxic insult and reduced ATP loss following a prolonged (18–30 hrs) hypoxia. In the present study we established the effects of FBP on the level of glutamate uptake and GS activity under normoxic and hypoxic conditions. Under normoxic conditions, [U-14C]glutamate uptake and glutamine production were independent of FBP treatment; whereas under hypoxic conditions, the initial increase in glutamate uptake and an overall increase in glutamine production in astrocytes were FBP-dependent. Glutamine synthetase activity was dependent on FBP added during the 22 hours of either normoxic- or hypoxic-treatment, hence significant increases in activity were observed due to FBP regardless of the oxygen/ATP levels in situ. These studies suggest that activation of GS by FBP may provide astrocytic protection against hypoxic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martinez-Hemandez, A., Bell, K. P., and Norenberg, M. D. 1977. Glutamine synthetase: Glial localization in brain. Science 195:1356–1358.

    Google Scholar 

  2. Norenberg, M. D., and Martinez-Hernandez, A. 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161:303–310.

    Google Scholar 

  3. Tansey, F. A., Farooq, M., and Cammer, W. 1991. Glutamine synthetase in oligodendrocytes and astrocytes: new biochemical and immunocytochemical evidence. J. Neurochem. 56:266–272.

    Google Scholar 

  4. D'Amelio, F., Eng, L. F., and Gibbs, M. A. 1990. Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system. Glia 3:335–341.

    Google Scholar 

  5. Benjamin, A. M., and Quastel, J. H. 1972. Locations of amino acids in brain cortex slices from the rat. Tetrodotoxin-sensitive release of amino acids. Biochem. J. 128:631–646.

    Google Scholar 

  6. Benjamin, A. M., and Quastel, J. H. 1975. Metabolism of amino acids and ammonia in rat brain cortex slices in vitro. A possible role of ammonia in brain function. J. Neurochem. 25:197–206.

    Google Scholar 

  7. Waniewski, R. A., and Martin, D. L. 1986. Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures. J. Neurochem. 47:304–313.

    Google Scholar 

  8. Yu, A. C. H., Fisher, T. E., Hertz, E., Tildon, J. T., Schousboe, A., and Hertz, L. 1984. Metabolic fate of [14C]-glutamine in mouse cerebral neurons in primary cultures. J. Neurosci. Res. 11:351–357.

    Google Scholar 

  9. Shank, R. P., and Campbell, G. L. 1983. Metabolic precursors of glutamate and GABA. Pages 355–369,in Hertz, L., Kvamme, E., McGeer, E. G., and Schousboe, A. (eds.), Glutamine, Glutamate and GABA in the Central Nervous System, Alan R. Liss, New York.

    Google Scholar 

  10. Paulson, R. E., and Fonnum, F. 1989. Role of glial cells for the basal and Ca2+-dependent K+-evoked release of transmitter amino acids investigated by microdialysis. J. Neurochem. 52(6):1823–1829.

    Google Scholar 

  11. Hertz, L., Bock, E., and Schousboe, A. 1978. GFA content, glutamate uptake and activity of glutamate metabolizing enzymes in differentiating mouse astrocytes in primary cultures. Dev. Neurosci. 1:226–238.

    Google Scholar 

  12. Patel, A. J., and Hunt, A. 1985. Observations on cell growth and regulation of glutamine synthetase by dexamethasone in primary cultures of forebrain and cerebellar astrocytes. Devl. Brain Res. 18:175–184.

    Google Scholar 

  13. Pishak, M. R., and Phillips, A. T. 1980. Glucocorticoid stimulation of glutamine synthetase production in cultured rat glioma cells. J. Neurochem. 34:866–872.

    Google Scholar 

  14. Aizenman, Y., and DeVellis, J. 1987. Synergistic action of thyroid hormone, insulin, and hydrocortisone on astrocyte differentiation. Brain Res. 414:301–308.

    Google Scholar 

  15. Benjamin, A. M. 1987. Influence of Na+, K+, and Ca2+ on glutamine synthesis distribution in rat brain cortex slices: A possible linkage of glutamine synthetase with cerebral transport processes and energetics in the astrocytes. J. Neurochem. 48:1157–1164.

    Google Scholar 

  16. Rothman, S. 1984. Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J. Neurosci. 4:1884–1891.

    Google Scholar 

  17. Drejer, J., Benveniste, H., Diemer, N. H. and Schousboe, A. 1985. Cellular origin of ischemia-induced glutamate release from brain tissue in vivo and vitro. J. Neurochem. 45:145–151.

    Google Scholar 

  18. Nicholls, D. G., and Sihra, T. S. 1986. Synaptosomes possess an exocytotic pool of glutamat. Nature 321(6072):772–773.

    Google Scholar 

  19. Yu, A. C. H., Gregory, G. A., and Chan, P. H. 1989. Hypoxia-induced dysfunctions and injury of astrocytes in primary cell cultures. J. Cereb. Blood Flow & Metab. 9:20–28.

    Google Scholar 

  20. Gregory, G. A., Yu, A. C. H., and Chan, P. H. 1989. Fructose-1, 6-bisphosphate protects astrocytes from hypoxic damage. J. Cereb. Blood Flow & Metab. 9:29–34.

    Google Scholar 

  21. Gregory, G. A., Welsh, F. A., Yu, A. C. H., and Chan, P. H. 1990. Fructose-1,6-bisphosphate reduces ATP loss from hypoxic astrocytes. Brain Res. 516:310–312.

    Google Scholar 

  22. Farias, L. A., Smith, E. E., and Markov, A. K. 1990. Prevention of ischemic-hypoxic brain injury and death in rabbits with fructose-1,6-diphosphate. Stroke 21:606–613.

    Google Scholar 

  23. Booher, H., and Sensenbrenner, M. 1972. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, and rat brain in flask cultures. Neurobiology 2:97–105.

    Google Scholar 

  24. Yu, A. C. H., Chan, P. H., and Fishman, R. A. 1986. Effects of arachidonic acid on glutamate and γ-aminobutyric acid uptake in primary cultures of rat cerebral astrocytes and neurons. J. Neurochem. 47:1181–1189.

    Google Scholar 

  25. Hertz, L., Juurlink, B. H. J., and Szuchet, S. 1985. Cell cultures. Pages 603–666,in Lajtha, A. (eds.) Handbook of Neurochemistry, Volume 8, Edition 2nd, Plenum Press, New York.

    Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  27. Pishak, M. R., and Phillips, A. T. 1979. A modified radioisotopic assay for measuring glutamine synthetase activity in tissue extracts. Anal. Biochem. 94:82–88.

    Google Scholar 

  28. Kauppinen, R. A., and Nicholls, D. G. 1986. Synaptosomal bioenergetics. The role of glycolysis, pyruvate oxidation and responses to hypoglycemia. Eur. J. Biochem. 158:159–165.

    Google Scholar 

  29. Huang, H. M., Toral-Barza, L., and Gibson, G. 1991. Cytolsolic free calcium and ATP in synaptosomes after ischemia. Life Sciences 48(15):1439–145.

    Google Scholar 

  30. Simon, R. P., Swan, J. H., Griffiths, T., and Meldrum, B. S. 1984. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852.

    Google Scholar 

  31. Waniewski, R., and Martin, D. L. 1984. Characterization ofl-glutamic acid transport by glioma cells in culture: evidence for sodium-independent, chloride-dependent high affinity influx. J. Neurosci. 4(9):2237–2246.

    Google Scholar 

  32. Flott, B., and Siefert, W. 1991. Characterization of glutamate uptake systems in astrocyte primary cultures from rat brain. Glia 4:293–304.

    Google Scholar 

  33. Siesjo, B. K. 1984. Cerebral circulation and metabolism. J. Neurosurg. 60:883–908.

    Google Scholar 

  34. Markov, A. K. 1986. hemodynamics and metabolic effects of fructose 1–6, diphosphate in ischemia and shock-experimental and clinical observations. Annals Emer. Med. 15:1470–1477.

    Google Scholar 

  35. Yudkoff, M., Nissim, I., and Pleasure, D. 1988. Astrocyte metabolism of [15N] glutamine: implications for the glutamine-glutamate cycle. J. Neurochem. 51:843–850.

    Google Scholar 

  36. Kvamme, E., Svenneby, G., Hertz, L., and Schousboe, A. 1982. Properties of phosphate-activated glutaminase in astrocytes cultured from mouse brains. Neurochem. Res. 7:761–770.

    Google Scholar 

  37. Aoki, C., Kaneko, T., Starr, A., and Pickel, V. M. 1991. Identification of mitochondrial and non-mitochondrial glutaminase within select neurons and glia of rat forebrain by electron microscopic immunocytochemistry. J. Neurosci. Res. 28:531–548.

    Google Scholar 

  38. Waniewski, R. A. 1992. Physiological levels of ammonia regulate glutamine synthesis from extracellular glutamate in astrocyte cultures. J. Neurochem. 58(1):167–174.

    Google Scholar 

  39. Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N. H. 1984. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem. 43:1369–1374.

    Google Scholar 

  40. Sher, P. K., and Hu, S. 1990. Increased glutamate uptake and glutamine synthetase activity in neuronal cell cultures surviving chronic hypoxia. Glia 3:350–357.

    Google Scholar 

  41. Rosenberg, P. A., and Aizenman, E. 1989. Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci. Lett. 103:162–168.

    Google Scholar 

  42. Sugiyama, K., Brunori, A., and Mayer, M. L. 1989. Glial uptake of excitatory amino acids influences neuronal survival in cultures of mouse hippocampus. Neurosci. 32:779–791.

    Google Scholar 

  43. Simantov, R. 1989. Glutamate neurotoxicity in culture depends on the presence of glutamine: Implications for the role of glial cells in normal and pathological brain development. J. Neurochem. 52:1694–1699.

    Google Scholar 

  44. Swanson, R. A., Shiraishi, K., Morton, M. T., and Sharp, F. R. 1990. Methionine sulfoximine reduces cortical infarct size in rats after middle cerebral artery occlusion. Stroke 21(2):322–327.

    Google Scholar 

  45. Battaglioli, G., and Martin, D. L. 1991. GABA synthesis in brain slices is dependent on glutamine produced in astrocytes. Neurochem. Res. 16(2):151–156.

    Google Scholar 

  46. Hayashi, M., Hayashi, R., Tanii, H., Hashimoto, K., and Patel, A. J. 1988. The influence of neuronal cells on the development of glutamine synthetase in astrocytes in vitro. Devl. Brain Res. 41:37–42.

    Google Scholar 

  47. Wu, D. K., Scully, S., and De Vellis, J. 1988. Induction of glutamine synthetase in rat astrocytes by cultivation with embryonic chick neurons. J. Neurochem. 50:929–935.

    Google Scholar 

  48. Petito, C. K., Chung, M. C., Verkhovsky, L. M., and Cooper, A. J. L. 1992. Brain glutamine synthetase increases following cerebral ischemia in the rat. Brain Res. 569:275–280.

    Google Scholar 

  49. Richke, R., and Krieglstein, J. 1991. Postischemic neuronal damage causes astroglial activation and increase in local cerebral glucose utilization of rat hippocampus. J. Cereb. Blood Flow Metab. 11:106–113.

    Google Scholar 

  50. Condorelli, D. F., Dell'Albani, P., Kaczmarek, L., Messina, L., Spampinato, G., Avola, R., Messina, A., and Giuffrida Stella, A. M. 1990. Glial fibrillary acidic protein messenger RNA and glutamine synthetase activity after nervous system injury. J. Neurosci. Res. 26:251–257.

    Google Scholar 

  51. Tiffany-Castiglioni, E. C., Peterson, S. L., and Castiglioni, A. J. 1990. Alterations in glutamine synthetase activity by FeCl2-induced focal and kindled amygdaloid seizures. J. Neurosci. Res. 25:223–228.

    Google Scholar 

  52. Tholey, G., Copin, J. C., and Ledig, M. 1991. Hypoxia induced metabolism dysfunction of rat astrocytes in primary cell cultures. Neurochem. Res. 16(4):423–428.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelleher, J.A., Gregory, G.A. & Chan, P.H. Effect of fructose-1,6-bisphosphate on glutamate uptake and glutamine synthetase activity in hypotix astrocyte cultures. Neurochem Res 19, 209–215 (1994). https://doi.org/10.1007/BF00966818

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966818

Key Words

Navigation