Neurochemical Research

, Volume 19, Issue 2, pp 129–133 | Cite as

Linoleic acid passage through the blood-brain barrier and a possible effect of age

  • Luca Avellini
  • Luigi Terracina
  • Alberto Gaiti
Original Articles


It has already been established that the blood-brain barrier is readily crossed by unsaturated fatty acids, while saturated fatty acid transport appears to be protein mediated. When the passage of the fatty acids is tested in vivo by using perfusion buffers containing both linoleate and palmitate in different concentrations, linoleate is able to decrease the palmitate passage, while palmitate increases the linoleate passage. These results could be related to the effect of two fatty acids on the ratio between the fatty acids bound to the serum albumin and the free fatty acid pool, which is only available for transport through membranes. However, on the basis of some results obtained with aged rats, the possibility that a relationship may exist between palmitate and linoleate during their passage through the BBB is discussed. Moreover, it seems likely that in aged rats a moderate modification for fatty acids takes place in the BBB.

Key words

Blood-brain barrier aging linoleate palmitate permeability-area product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dhopeshwarkar, G. A. 1973. Uptake and transport of fatty acids into the brain and the role of the blood brain barrier system. Adv. Lipid Res. 11:109–142.Google Scholar
  2. 2.
    Betz, A. L., Goldstein, G. W., and Katzman, R. 1989. Blood-brain cerebrospinal fluid barriers. Pages 591-in Agranoff B. W., Albers, R. W., Molinoff, P. B. (eds.), Basic Neurochemistry, fourth edition, Raven Press, New York.Google Scholar
  3. 3.
    Morand, O., Masson, M., Baumann, N., and Bourre, J. M. 1981. Exogenous 1-14C-lignoceric acid uptake by neurons, astrocytes and myelin, as compared to incorporation of 1-14C-palmitic and stearic acids. Neurochem. Int. 3:329–334.Google Scholar
  4. 4.
    Moore, S. A., Yoder, E., Spector, A. A. 1990. Role of the blood-brain barrier in the formation of long-chain ω-3 and ω-6 fatty acids from essential fatty acid precursors. J. Neurochem. 55:391–402.Google Scholar
  5. 5.
    Pardridge, W. M., and Mietus, L. J. 1980. Palmitate and cholesterol transport through the blood-brain barrier. J. Neurochem. 34:463–466.Google Scholar
  6. 6.
    Spector, R. 1988. Fatty acid transport through the blood-brain barrier. J. Neurochem. 50:639–643.Google Scholar
  7. 7.
    Spector, R. 1989. Eicosanoids at the Blood-Brain Barrier. Pages 146–152,in Barkai A. I., and Bazan N. G. (eds), Arachidonic acid metabolism in the nervous system, Ann. N.Y. Acad. Sci. 559.Google Scholar
  8. 8.
    Mooradian, A. D. 1988. Effect of aging on the blood-brain barrier. Neurobiol. Aging, 9:31–39.Google Scholar
  9. 9.
    Mooradian, A. D. 1988. Blood-brain barrier transport of choline is reducd in the aged rat. Brain. Research. 440:328–332.Google Scholar
  10. 10.
    Mooradian, A. D. 1990. Blood-brain barrier transport of triiodothyronine is reduced in aged rats. Mech. Ageing Dev. 52:141–147.Google Scholar
  11. 11.
    Mooradian, A. D., Morin, A. M., Cipp, L. J., & Haspel, H. C. 1991. Glucose transport is reduced in the blood-brain barrier of aged rats. Brain Res., 551:145–149.Google Scholar
  12. 12.
    Gaiti, A. 1989. The aging brain: a normal phoenomenon with not-so-normal Arachidonic acid metabolism. Pages 365–373,in Barkai, A. I., and Bazan, N. G. (eds), Arachidonic acid metabolism in the nervous system, Ann. N.Y. Acad. Sci. 559.Google Scholar
  13. 13.
    Gatti, C., Noremberg, K., Brunetti, M., Teolato, S., Calderini, G., Gaiti, A. 1986. Turnover of palmitic and arachidonic acids in the phospholipids from different brain areas of adult and aged rats. Neurochem. Res. 11:241–252.Google Scholar
  14. 14.
    Takasato, Y., Rapoport, S. I., and Smith, Q. R. 1984. An in situ brain perfusion technique to study cerebrovascular transport in rat. Am. J. Physiol. 246:H484-H493.Google Scholar
  15. 15.
    Spector, R., Sivesind, C., and Kinzenbaw, D. 1986. Pantothenic acid transport through the blood brain barrier. J. Neurochem. 47:404–404.Google Scholar
  16. 16.
    Ziylan, Y. Z., Le Fauconnier, J. M., Bernard, G., Bourre, J. M. 1988. Effect of dexamethasone on transport of α-aminoisobutyric acid and sucrose across the blood-brain barrier, J. Neurochem. 51:1338–1342.Google Scholar
  17. 17.
    Sztriha, L., and Betz, A. L. 1991. Oleic acid reversibly opens the blood-brain barrien. Brain Res. 550:257–262.Google Scholar
  18. 18.
    Villacara, A., Kempski, O., & Staz, M. 1990. Arachidonic acid and cerebromicrovascular endothelial permeability. Adv. Neurol., 52:195–201.Google Scholar
  19. 19.
    Li, J., Wetzel, M. G., O'Brien, P. J. 1992. Transport of n-3 fatty acids from the intestine to retina in rats. J. Lipid Res., 33:539–549.Google Scholar
  20. 20.
    Spector, R. 1986. Plasma albumin as a lipoprotein. Pages 247–279, in Scanu, A. M., Spector, R. (eds), Biochemistry and Biology of Plasma Protein, Dekker, New York.Google Scholar
  21. 21.
    Horrocks, L. A. 1989. Sources for brain arachidonic acid uptake and turnover in glycerophospholipids. Pages 17–24, in Barkai, A. I., and Bazan, N. G. (eds), Arachidonic acid metabolism in the nervous system, Ann. N.Y. Acad. Sci. 559.Google Scholar
  22. 22.
    Pardridge, W. M. 1991. Blood-brain barrier transport of glucose, free fatty acids, and ketone bodies. Adv. Exp. Med. Biol. 291:43–53.Google Scholar
  23. 23.
    Brown, J. R., Shockley, P. 1982. Serum albumin: structure and characterization of its ligand binding sites, Pages 25–68,in Jost, P. C., Griffith, O. H. (eds.), Lipid protein interaction, John Wiley & Sons, New York.Google Scholar
  24. 24.
    Spector, R. 1975. Fatty acid binding to plasma albumin. J. Lipid Res. 16:165–179.Google Scholar
  25. 25.
    Scheider, W. 1980. Ligand-independent activated state of serum albumin for fatty acid binding. J. Phys. Chem. 84:925–928.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Luca Avellini
    • 1
  • Luigi Terracina
    • 1
  • Alberto Gaiti
    • 1
  1. 1.Istituto di Biochimica e Chimica MedicaUniversità di PerugiaPerugiaItaly

Personalised recommendations